Omeprazole inhibits α-glucosidase activity and the formation of nonenzymatic glycation products: Activity and mechanism

Author(s):  
Chen Yu ◽  
Zi-Yi Yu ◽  
Yi-Ting Wen ◽  
Wei-Ming Chai ◽  
Lin-Jun Wang ◽  
...  
2019 ◽  
Vol 20 (15) ◽  
pp. 1309-1320 ◽  
Author(s):  
Ahmed M. Younis ◽  
Marwa M. Abdel-Aziz ◽  
Mohamed Yosri

Background:: Mushrooms are deemed as a special delicacy in many countries. They are considered an important cuisine due to their bioactive ingredients and possible health benefits. Methods: Herein, we measured selected biological properties of methanol extracts of Pleurotus citrinopileatus and Boletus edulis fruiting bodies including; in vitro antimicrobial activity, anti-α- glucosidase activity, antioxidant activity, anti-lipase activity and cytotoxic activity against different cancer cells and normal cells. Results: B. edulis methanol extracts showed high antimicrobial and anti-α-glucosidase activity. In contrast, P. citrinopileatus methanol extracts showed superior antioxidant activity indicated by (1,1- diphenyl-2-picrylhydrazyl) DPPH radical scavenging with half maximal inhibitory concentration of IC50 37.4 µg/ml, anti-lipase activities with IC50 65.2 µg/ml and high cytotoxicity activity against HepG2 and HeLa cell lines with IC50 22.8 and 36.7 µg/ml, respectively. Flow cytometric analysis of the cell cycle was used to show apoptotic effects of methanol extracts against HepG2 and HeLa cells. Conclusion: P. citrinopileatus and B. edulis methanolic extracts appear to contain biologically active compounds that might be used to treat some common human diseases.


2019 ◽  
Vol 43 (24) ◽  
pp. 9458-9465
Author(s):  
Xiquan Yue ◽  
Lihong Su ◽  
Xu Chen ◽  
Junfeng Liu ◽  
Longpo Zheng ◽  
...  

The strategy is based on small molecule-mediated hybridization chain reaction.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1420
Author(s):  
Faith Seke ◽  
Vimbainashe E. Manhivi ◽  
Tinotenda Shoko ◽  
Retha M. Slabbert ◽  
Yasmina Sultanbawa ◽  
...  

Natal plums (Carissa macrocarpa) are a natural source of bioactive compounds, particularly anthocyanins, and can be consumed as a snack. This study characterized the impact of freeze drying and in vitro gastrointestinal digestion on the phenolic profile, antioxidant capacity, and α-glucosidase activity of the Natal plum (Carissa macrocarpa). The phenolic compounds were quantified using high performance liquid chromatography coupled to a diode-array detector HPLC-DAD and an ultra-performance liquid chromatograph (UPLC) with a Waters Acquity photodiode array detector (PDA) coupled to a Synapt G2 quadrupole time-of-flight (QTOF) mass spectrometer. Cyanidin-3-O-β-sambubioside (Cy-3-Sa) and cyanidin-3-O-glucoside (Cy-3-G) were the dominant anthocyanins in the fresh and freeze-dried Natal plum powder. Freeze drying did not affect the concentrations of both cyanidin compounds compared to the fresh fruit. Both cyanidin compounds, ellagic acid, catechin, epicatechin syringic acid, caffeic acid, luteolin, and quercetin O-glycoside from the ingested freeze-dried Natal plum powder was quite stable in the gastric phase compared to the small intestinal phase. Cyanidin-3-O-β-sambubioside from the ingested Natal plum powder showed bioaccessibility of 32.2% compared to cyanidin-3-O-glucoside (16.3%). The degradation of anthocyanins increased the bioaccessibility of gallic acid, protocatechuic acid, coumaric acid, and ferulic acid significantly, in the small intestinal digesta. The ferric reducing antioxidant power (FRAP), 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) activities, and inhibitory effect of α-glucosidase activity decreased in the small intestinal phase. Indigenous fruits or freeze-dried powders with Cy-3-Sa can be a better source of anthocyanin than Cy-3-G due to higher bioaccessibility in the small intestinal phase.


2021 ◽  
Vol 188 (7) ◽  
Author(s):  
Jiabao Zhang ◽  
Jinying Liu ◽  
Mengke Wang ◽  
Guannan Wang ◽  
Xingguang Su

Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1343
Author(s):  
Lihua Liu ◽  
Chenyi Zhang ◽  
Huimin Zhang ◽  
Guoqiang Qu ◽  
Chun Li ◽  
...  

Apple pomace, the main by-product in apple processing, is a cheap source of bioactive compounds that could be used in the food industry. However, the value of this by-product is still far from being fully realized. In this study, 11 strains of Lactobacillus strains were assayed for β-glucosidase activity, and only Lactobacillus rhamnosus L08 (L. rhamnosus L08) showed high cell-membrane associated β-glucosidase activity. We then evaluated the effects of fermentation of apple pomace using the selected strain, focusing on the biotransformation of polyphenols and antioxidant capacity. We found that L. rhamnosus L08 fermentation significantly reduced the contents of quercitrin and phlorizin in apple pomace, while increasing the contents of quercetin and phloretin. The contents of gallic acid, epicatechin acid, caffeic acid, and ferulic acid were also increased in apple pomace after fermentation. In addition, the antioxidant activities of apple pomace were enhanced during fermentation, based on the bioconversion of phenolic profiles. Our results demonstrate that lactic acid bacteria fermentation is a promising approach to enhance the bioactivity of phenolic compounds in apple pomace. Moreover, this study demonstrates that, as a valuable processing by-product with bioactive components, apple pomace can be used in the food industry to provide economic benefits.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 963
Author(s):  
Jon Kepa Izaguirre ◽  
Leire Barañano ◽  
Sonia Castañón ◽  
Itziar Alkorta ◽  
Luis M. Quirós ◽  
...  

Soybeans and soy-based products contain isoflavones which can be used for nutraceutical and medical applications. In soybeans and in unfermented soy foods, isoflavones are normally present as glycosides. Isoflavone glycosides can be enzymatically converted to isoflavone aglycones, thus releasing the sugar molecule. The effective absorption of isoflavones in humans requires the bioconversion of isoflavone glycosides to isoflavone aglycones through the activity of the enzyme β-glucosidase. The objective was to assess the capacity of 42 bacterial strains (belonging to Lactobacillus, Streptococcus and Enterococcus) to produce β-glucosidase activity. The strain that showed the highest β-glucosidase activity (Lactobacillus plantarum 128/2) was then used for the optimization of the bioconversion of genistin and daidzin present in commercial soymilk to their aglycone forms genistein and daidzein. The contribution of process parameters (temperature, inoculum size, time) to the efficiency of such bioactivation was tested. Lactobacillus plantarum 128/2 was able to completely bioactivate soymilk isoflavones under the following conditions: 25 °C temperature, 2% inoculum size and 48 h process time. These results confirm the suitability of lactic acid bacteria for the bioactivation of isoflavones present in soymilk and provide an interesting candidate (L. plantarum 182/2) for food industries to perform this transformation.


Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 483
Author(s):  
Dahae Lee ◽  
Jun Yeon Park ◽  
Sanghyun Lee ◽  
Ki Sung Kang

In this study, we examined the effect of ethanolic extract of Salicornia herbacea (ESH), isorhamnetin 3-O-glucoside (I3G), quercetin 3-O-glucoside (Q3G), quercetin, and isorhamnetin on α-glucosidase activity and glucose-stimulated insulin secretion (GSIS) in insulin-secreting rat insulinoma (INS-1) cells. A portion of the ethyl acetate fraction of ESH was chromatographed on a silica gel by a gradient elution with chloroform and methanol to provide Q3G and I3G. ESH, Q3G, and quercetin inhibited α-glucosidase activity, and quercetin (IC50 value was 29.47 ± 3.36 μM) inhibited the activity more effectively than Q3G. We further demonstrated that ESH, Q3G, quercetin, I3G, and isorhamnetin promote GSIS in INS-1 pancreatic β-cells without inducing cytotoxicity. Among them, I3G was the most effective in enhancing GSIS. I3G enhanced the phosphorylation of total extracellular signal-regulated kinase (ERK), insulin receptor substrate-2 (IRS-2), phosphatidylinositol 3-kinase (PI3K), Akt, and activated pancreatic and duodenal homeobox-1 (PDX-1), which are associated with insulin secretion and β-cell function. As components of ESH, Q3G has the potential to regulate blood glucose by inhibiting α-glucosidase activity, and I3G enhances the insulin secretion, but its bioavailability should be considered in determining biological importance.


Fermentation ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 22
Author(s):  
Natalia S. Brizuela ◽  
Marina Arnez-Arancibia ◽  
Liliana Semorile ◽  
María Ángeles Pozo-Bayón ◽  
Bárbara M. Bravo-Ferrada ◽  
...  

Lactiplantibacillus plantarum strain UNQLp 11 is a lactic acid bacterium with the potential to carry out malolactic fermentation (MLF) in red wines. Recently, the complete genome of UNQLp 11 was sequenced and this strain possesses four loci of the enzyme β-glucosidase. In order to demonstrate that these glucosidase enzymes could be functional under harsh wine conditions, we evaluated the hydrolysis of p-nitrophenyl-β-D-glucopyranoside (p-NPG) in synthetic wine with different ethanol contents (0%, 12%, and 14% v/v) and at different pH values (3.2, 3.5, and 3.8). Then, the hydrolysis of precursor n-octyl β-D-glucopyranoside was analyzed in sterile Pinot Noir wine (containing 14.5% v/v of ethanol, at different pH values) by headspace sorptive extraction gas chromatography-mass spectrometry (HSSE-GC/MS). The hydrolysis of p-NPG showed that β-glucosidase activity is very susceptible to low pH but induced in the presence of high ethanol content. Furthermore, UNQLp 11 was able to release the glycosilated precursor n-octyl, during MLF to a greater extent than a commercial enzyme. In conclusion, UNQLp 11 could improve the aromatic profile of the wine by the release of volatile precursors during MLF.


2017 ◽  
Vol 53 (5) ◽  
pp. 988-990 ◽  
Author(s):  
D. N. Olennikov ◽  
T. G. Gornostai ◽  
T. A. Penzina ◽  
G. B. Borovskii

Sign in / Sign up

Export Citation Format

Share Document