scholarly journals Biotransformation of Polyphenols in Apple Pomace Fermented by β-Glucosidase-Producing Lactobacillus rhamnosus L08

Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1343
Author(s):  
Lihua Liu ◽  
Chenyi Zhang ◽  
Huimin Zhang ◽  
Guoqiang Qu ◽  
Chun Li ◽  
...  

Apple pomace, the main by-product in apple processing, is a cheap source of bioactive compounds that could be used in the food industry. However, the value of this by-product is still far from being fully realized. In this study, 11 strains of Lactobacillus strains were assayed for β-glucosidase activity, and only Lactobacillus rhamnosus L08 (L. rhamnosus L08) showed high cell-membrane associated β-glucosidase activity. We then evaluated the effects of fermentation of apple pomace using the selected strain, focusing on the biotransformation of polyphenols and antioxidant capacity. We found that L. rhamnosus L08 fermentation significantly reduced the contents of quercitrin and phlorizin in apple pomace, while increasing the contents of quercetin and phloretin. The contents of gallic acid, epicatechin acid, caffeic acid, and ferulic acid were also increased in apple pomace after fermentation. In addition, the antioxidant activities of apple pomace were enhanced during fermentation, based on the bioconversion of phenolic profiles. Our results demonstrate that lactic acid bacteria fermentation is a promising approach to enhance the bioactivity of phenolic compounds in apple pomace. Moreover, this study demonstrates that, as a valuable processing by-product with bioactive components, apple pomace can be used in the food industry to provide economic benefits.

2019 ◽  
Vol 2 (1) ◽  
pp. 67
Author(s):  
Milena Dimitrova ◽  
Galin Ivanov ◽  
Kiril Mihalev ◽  
Alexander Slavchev ◽  
Ivelina Ivanova ◽  
...  

The antimicrobial activity of polyphenol-enriched extracts from industrial plant by-products (strawberry and bilberry press residues and distilled rose petals) against probiotic lactic acid bacteria (Lactobacillus delbrueckii subsp. bulgaricus – S10 and S19; Lactobacillus rhamnosus – YW and S25; Lactobacillus gasseri – S20; Streptococcus thermophilus – S13 and S32) was investigated. The minimum inhibitory concentration (MIC) in most strains tested was found to be relatively high (from 6.25 mg.mL-1 to 12.50 mg.mL-1). The maximum concentration of polyphenols without inhibitory effect (MCWI) ranges from 0.390mg.mL-1 to 0.781mg.mL-1. The results obtained in the present study showed that among the tested lactic acid bacteria Lactobacillus delbrueckii subsp. bulgaricus – S19, Lactobacillus rhamnosus – YW and Streptococcus thermophilus – S13 had the best growth characteristics in polyphenol-enriched culture medium. These strains had the highest MIC and MCWI values and could be used as starter cultures for polyphenol-fortified fermented milks. Practical applications: The use of polyphenol-enriched extracts from industrial plant by-products (waste) – distilled rose petals (by-products of rose oil production) and strawberry and bilberry press residues (by-products of fruit juice production) contribute for improving the economic effect and for solving environmental problems in food industry. Development of functional fermented milks with combination of probiotic starter cultures and polyphenol extracts is current and perspective direction of food industry.


Foods ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1182 ◽  
Author(s):  
Carmen Masiá ◽  
Poul Erik Jensen ◽  
Patrizia Buldo

Texture and flavor are currently the main challenges in the development of plant-based dairy alternatives. To overcome them, the potential of microorganisms for fermentation of plant-based raw materials is generating great interest in the food industry. This study examines the effect of Lactobacillus rhamnosus, LGG® (LGG® is a trademark of Chr. Hansen A/S) on the physicochemical properties of fermented soy, oat, and coconut. LGG® was combined with different lactic acid bacteria (LAB) strains and Bifidobacterium, BB-12® (BB-12® is a trademark of Chr. Hansen A/S). Acidification, titratable acidity, and growth of LGG® and BB-12® were evaluated. Oscillation and flow tests were performed to analyze the rheological properties of fermented samples. Acids, carbohydrates, and volatile organic compounds in fermented samples were identified, and a sensory evaluation with a trained panel was conducted. LGG® reduced fermentation time in all three bases. LGG® and BB-12® grew in all fermented raw materials above 107 CFU/g. LGG® had no significant effect on rheological behavior of the samples. Acetoin levels increased and acetaldehyde content decreased in the presence of LGG® in all three bases. Diacetyl levels increased in fermented oat and coconut samples when LGG® was combined with YOFLEX® YF-L01 and NU-TRISH® BY-01 (YOFLEX® and NU-TRISH® are trademarks of Chr. Hansen A/S). In all fermented oat samples, LGG® significantly enhanced fermented flavor notes, such as sourness, lemon, and fruity taste, which in turn led to reduced perception of the attributes related to the base. In fermented coconut samples, gel firmness perception was significantly improved in the presence of LGG®. These findings suggest supplementation of LAB cultures with LGG® to improve fermentation time and sensory perception of fermented plant-based products.


2020 ◽  
Vol 16 (8) ◽  
Author(s):  
Ya-nan Xu ◽  
Li-ping Zeng ◽  
Nan Xiao ◽  
Chao Wang ◽  
Zuan-hao Liang ◽  
...  

AbstractConsumption of functional juice is becoming increasingly popular. This study aimed to evaluate the effect of probiotic fermentation with Bacillus sp. DU-106; Lactobacillus planturum Lp-43 and Lactobacillus rhamnosus Lr-156 on the biochemical and functional characteristics, antioxidant activities and storage stability of Dendrobium officinale and banana (DOB) juice. The cell levels of the lactic acid bacteria reached near 9 log copies/mL after fermentation at 32 °C for 36 h and could keep in this level after storage at 4 °C for 28 days. After fermentation, total acidity, flavonoids and polysaccharide contents of DOB juice increased, while pH, dissolved oxygen, nitrite, nitrate, vitamin C, β-carotene, sugar contents and antioxidant capacity slightly decreased. Compared with nonfermented DOB juice, polyphenol oxidase (PPO) and peroxidase (POD) activities of fermented DOB decreased significantly, but the color value and the content of total phenols and vitamin C decreased slightly in fermented DOB juice during storage. Overall, the probiotic fermentation with selected strains could improve the quality the DOB juice, enhance antioxidant capacity and storage stability, and destroy accumulation of nitrite and nitrate during storage. Findings of this study would help in the development of beneficial beverages in industrial production.


Planta Medica ◽  
2010 ◽  
Vol 76 (12) ◽  
Author(s):  
A López Monzón ◽  
M Rico Santos ◽  
A Rivero Rosales ◽  
M Suarez de Tangil

2019 ◽  
Vol 30 (3) ◽  
pp. 16-22

World Health Organization (WHO) estimated that 80% of the population of developing countries use traditional medicines, mostly natural plant products, for their primary health care needs. In the past few decades, the medicinal value of plants has been assumed more important dimension owing largely to the discovery that extracts from plants contain not only primary metabolites but also a diverse array of secondary metabolites with antioxidant potential. Medicinal plants are potential sources of natural compounds with biological activities and therefore attract the attention of researchers worldwide. Antioxidants are vital substances which possess ability to protect the body from damage due to free radical-induced oxidative stress. The purpose of current study was to determine the antioxidant activities and bioactive components of Foeniculum vulgare (fennel) (Samonsabar) seeds by using UV Visible Spectrophotometer (UV-Vis) and Gas Chromatography-Mass Spectrometry (GC-MS). Aqueous extract of fennel seeds showed more antioxidant activity (IC50: 0.28 ug/ml) than ethanolic extract (IC50: 0.83 ug/ml) and comparable to standard antioxidant, ascorbic acid (IC50: 0.59 ug/ml). GC-MS analysis was fruitful in identification of compounds based on peak area, retention time, molecular formula, molecular weight, MS Fragmentions and pharmacological actions. Ten bioactive phytochemical compounds from aqueous extracts and 11 from ethanolic extract of fennel seeds were identified. These findings indicated that fennel seeds are potential to provide preventive properties against oxidative damage. These results will give scientific information for quality control of indigenous drug to herbal medicine users and local practitioners using fennel for different types of ailments


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 963
Author(s):  
Jon Kepa Izaguirre ◽  
Leire Barañano ◽  
Sonia Castañón ◽  
Itziar Alkorta ◽  
Luis M. Quirós ◽  
...  

Soybeans and soy-based products contain isoflavones which can be used for nutraceutical and medical applications. In soybeans and in unfermented soy foods, isoflavones are normally present as glycosides. Isoflavone glycosides can be enzymatically converted to isoflavone aglycones, thus releasing the sugar molecule. The effective absorption of isoflavones in humans requires the bioconversion of isoflavone glycosides to isoflavone aglycones through the activity of the enzyme β-glucosidase. The objective was to assess the capacity of 42 bacterial strains (belonging to Lactobacillus, Streptococcus and Enterococcus) to produce β-glucosidase activity. The strain that showed the highest β-glucosidase activity (Lactobacillus plantarum 128/2) was then used for the optimization of the bioconversion of genistin and daidzin present in commercial soymilk to their aglycone forms genistein and daidzein. The contribution of process parameters (temperature, inoculum size, time) to the efficiency of such bioactivation was tested. Lactobacillus plantarum 128/2 was able to completely bioactivate soymilk isoflavones under the following conditions: 25 °C temperature, 2% inoculum size and 48 h process time. These results confirm the suitability of lactic acid bacteria for the bioactivation of isoflavones present in soymilk and provide an interesting candidate (L. plantarum 182/2) for food industries to perform this transformation.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 2075
Author(s):  
Tianrui Zhao ◽  
Mengxue Sun ◽  
Lingpeng Kong ◽  
Qingwang Xue ◽  
Yudan Wang ◽  
...  

Vaccinium dunalianum Wight, usually processed as a traditional folk tea beverage, is widely distributed in the southwest of China. The present study aimed to investigate the antioxidant, α-glucosidase and pancreatic lipase inhibitory activities of V.dunalianum extract and isolate the bioactive components. In this study, the crude extract (CE) from the buds of V. dunalianum was prepared by the ultrasound-assisted extraction method in 70% methanol and then purified with macroporous resin D101 to obtain the purified extract (PM). Five fractions (Fr. A–E) were further obtained by MPLC column (RP-C18). Bioactivity assays revealed that Fr. B with 40% methanol and Fr. D with 80% methanol had better antioxidant with 0.48 ± 0.03 and 0.62 ± 0.01 nM Trolox equivalent (TE)/mg extract for DPPH, 0.87 ± 0.02 and 1.58 ± 0.02 nM TE/mg extract for FRAP, 14.42 ± 0.41 and 19.25 ± 0.23 nM TE/mg extract for ABTS, and enzyme inhibitory effects with IC50 values of 95.21 ± 2.21 and 74.55 ± 3.85 for α-glucosidase, and 142.53 ± 11.45 and 128.76 ± 13.85 µg/mL for pancreatic lipase. Multivariate analysis indicated that the TPC and TFC were positively related to the antioxidant activities. Further phytochemical purification led to the isolation of ten compounds (1–10). 6-O-Caffeoylarbutin (7) showed significant inhibitory effects on α-glucosidase and pancreatic lipase enzymes with values of 38.38 ± 1.84 and 97.56 ± 7.53 µg/mL, and had the highest antioxidant capacity compared to the other compounds.


Antioxidants ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 215 ◽  
Author(s):  
Cai-Ning Zhao ◽  
Guo-Yi Tang ◽  
Shi-Yu Cao ◽  
Xiao-Yu Xu ◽  
Ren-You Gan ◽  
...  

Tea is among the most consumed drink worldwide, and its strong antioxidant activity is considered as the main contributor to several health benefits, such as cardiovascular protection and anticancer effect. In this study, the antioxidant activities of 30 tea infusions, which were obtained by the mimic of drinking tea of the public, from green, black, oolong, white, yellow and dark teas, were evaluated using ferric-reducing antioxidant power (FRAP) and Trolox equivalent antioxidant capacity (TEAC) assays, ranging from 504.80 ± 17.44 to 4647.47 ± 57.87 µmol Fe2+/g dry weight (DW) and 166.29 ± 24.48 to 2532.41 ± 50.18 µmol Trolox/g DW, respectively. Moreover, their total phenolic contents (TPC) were detected by Folin-Ciocalteu assay and were in the range of 24.77 ± 2.02 to 252.65 ± 4.74 mg gallic acid equivalent (GAE)/g DW. Generally, Dianqing Tea, Lushan Yunwu Tea, and Xihu Longjing Tea showed the strongest antioxidant activities among 30 teas. Furthermore, the phenolic compounds in tea infusions were identified and quantified, with catechins most commonly detected, especially in green tea infusions, which were main contributors to their antioxidant activities. Besides tea polyphenols, considerable content of caffeine also presented in 30 tea infusions.


2005 ◽  
Vol 71 (10) ◽  
pp. 6008-6013 ◽  
Author(s):  
Domitille Fayol-Messaoudi ◽  
Cédric N. Berger ◽  
Marie-Hélène Coconnier-Polter ◽  
Vanessa Liévin-Le Moal ◽  
Alain L. Servin

ABSTRACT The mechanism(s) underlying the antibacterial activity of probiotic Lactobacillus strains appears to be multifactorial and includes lowering of the pH and the production of lactic acid and of antibacterial compounds, including bacteriocins and nonbacteriocin, non-lactic acid molecules. Addition of Dulbecco's modified Eagle's minimum essential medium to the incubating medium delays the killing activity of lactic acid. We found that the probiotic strains Lactobacillus johnsonii La1, Lactobacillus rhamnosus GG, Lactobacillus casei Shirota YIT9029, L. casei DN-114 001, and L. rhamnosus GR1 induced a dramatic decrease in the viability of Salmonella enterica serovar Typhimurium SL1344 mainly attributable to non-lactic acid molecule(s) present in the cell-free culture supernatant (CFCS). These molecules were more active against serovar Typhimurium SL1344 in the exponential growth phase than in the stationary growth phase. We also showed that the production of the non-lactic acid substance(s) responsible for the killing activity was dependent on growth temperature and that both unstable and stable substances with killing activity were present in the CFCSs. We found that the complete inhibition of serovar Typhimurium SL1344 growth results from a pH-lowering effect.


Sign in / Sign up

Export Citation Format

Share Document