Highly-efficient and selective adsorption of anionic dyes onto hollow polymer microcapsules having a high surface-density of amino groups: Isotherms, kinetics, thermodynamics and mechanism

2019 ◽  
Vol 542 ◽  
pp. 123-135 ◽  
Author(s):  
Jianwei Fu ◽  
Jianhua Zhu ◽  
Zhiwei Wang ◽  
Yahuan Wang ◽  
Shaomin Wang ◽  
...  
2020 ◽  
Vol 108 ◽  
pp. 114-128 ◽  
Author(s):  
Meng-Ya Xu ◽  
Hong-Liu Jiang ◽  
Ze-Wu Xie ◽  
Zeng-Tian Li ◽  
Di Xu ◽  
...  

Nanoscale ◽  
2021 ◽  
Author(s):  
Bing Fu ◽  
Zhijiao Wu ◽  
Kai Guo ◽  
Lingyu Piao

Owing to their scientific and technological importance, the development of highly efficient photocatalytic water oxidation systems with rapid photogenerated charge separation and high surface catalytic activity has highly desirable for...


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1437
Author(s):  
Chih Ming Ma ◽  
Bo-Yuan Yang ◽  
Gui-Bing Hong

Hydrogel beads based on the husk of agarwood fruit (HAF)/sodium alginate (SA), and based on the HAF/chitosan (CS) were developed for the removal of the dyes, crystal violet (CV) and reactive blue 4 (RB4), in aqueous solutions, respectively. The effects of the initial pH (2–10) of the dye solution, the adsorbent dosage (0.5–3.5 g/L), and contact time (0–540 min) were investigated in a batch system. The dynamic adsorption behavior of CV and RB4 can be represented well by the pseudo-second-order model and pseudo-first-order model, respectively. In addition, the adsorption isotherm data can be explained by the Langmuir isotherm model. Both hydrogel beads have acceptable adsorption selectivity and reusability for the study of selective adsorption and regeneration. Based on the effectiveness, selectivity, and reusability of these hydrogel beads, they can be treated as potential adsorbents for the removal of dyes in aqueous solutions.


2017 ◽  
Vol 4 (11) ◽  
pp. 1783-1790 ◽  
Author(s):  
Kai-Li Yan ◽  
Jing-Qi Chi ◽  
Zi-Zhang Liu ◽  
Bin Dong ◽  
Shan-Shan Lu ◽  
...  

Ag-doped mesoporous NiCoO nanorods as efficient and stable electrocatalysts for oxygen evolution reaction have been synthesized with desirable conductivity, high surface area and rich oxygen vacancies.


2018 ◽  
Vol 2 (4) ◽  
pp. 74 ◽  
Author(s):  
Abinash Tripathy ◽  
Patryk Wąsik ◽  
Syama Sreedharan ◽  
Dipankar Nandi ◽  
Oier Bikondoa ◽  
...  

Functional ZnO nanostructured surfaces are important in a wide range of applications. Here we report the simple fabrication of ZnO surface structures at near room temperature with morphology resembling that of sea urchins, with densely packed, μm-long, tapered nanoneedles radiating from the urchin center. The ZnO urchin structures were successfully formed on several different substrates with high surface density and coverage, including silicon (Si), glass, polydimethylsiloxane (PDMS), and copper (Cu) sheets, as well as Si seeded with ZnO nanocrystals. Time-resolved SEM revealed growth kinetics of the ZnO nanostructures on Si, capturing the emergence of “infant” urchins at the early growth stage and subsequent progressive increases in the urchin nanoneedle length and density, whilst the spiky nanoneedle morphology was retained throughout the growth. ε-Zn(OH)2 orthorhombic crystals were also observed alongside the urchins. The crystal structures of the nanostructures at different growth times were confirmed by synchrotron X-ray diffraction measurements. On seeded Si substrates, a two-stage growth mechanism was identified, with a primary growth step of vertically aligned ZnO nanoneedle arrays preceding the secondary growth of the urchins atop the nanoneedle array. The antibacterial, anti-reflective, and wetting functionality of the ZnO urchins—with spiky nanoneedles and at high surface density—on Si substrates was demonstrated. First, bacteria colonization was found to be suppressed on the surface after 24 h incubation in gram-negative Escherichia coli (E. coli) culture, in contrast to control substrates (bare Si and Si sputtered with a 20 nm ZnO thin film). Secondly, the ZnO urchin surface, exhibiting superhydrophilic property with a water contact angle ~ 0°, could be rendered superhydrophobic with a simple silanization step, characterized by an apparent water contact angle θ of 159° ± 1.4° and contact angle hysteresis ∆θ < 7°. The dynamic superhydrophobicity of the surface was demonstrated by the bouncing-off of a falling 10 μL water droplet, with a contact time of 15.3 milliseconds (ms), captured using a high-speed camera. Thirdly, it was shown that the presence of dense spiky ZnO nanoneedles and urchins on the seeded Si substrate exhibited a reflectance R < 1% over the wavelength range λ = 200–800 nm. The ZnO urchins with a unique morphology fabricated via a simple route at room temperature, and readily implementable on different substrates, may be further exploited for multifunctional surfaces and product formulations.


2015 ◽  
Vol 39 (10) ◽  
pp. 7759-7762 ◽  
Author(s):  
Diganta Bhuyan ◽  
Sudhir S. Arbuj ◽  
Lakshi Saikia

The high surface to volume ratio of Fe3O4 nanorods facilitates the excellent activation of H2O2 for the photo-Fenton-like degradation of crystal violet dye under solar light.


Sign in / Sign up

Export Citation Format

Share Document