Role of Extra Cellular Matrix Glycoprotein Tenascin C (TNC) in Ovarian Steroidogenesis and Tissue Remodelling in the Bovine Ovary

2015 ◽  
Vol 39 (6) ◽  
pp. 538
Author(s):  
Moafaq Samir ◽  
Dareen S. Mattar ◽  
Philip G. Knight
Author(s):  
Hariharan Jayaraman ◽  
Nalinkanth V. Ghone ◽  
Ranjith Kumaran R ◽  
Himanshu Dashora

: Mesenchymal stem cells because of its high proliferation, differentiation, regenerative capacity, and ease of availability have been a popular choice in cytotherapy. Mesenchymal Stem Cells (MSCs) have a natural tendency to home in a tumor microenvironment and acts against it, owing to the similarity of the latter to an injured tissue environment. Several studies have confirmed the recruitment of MSCs by tumor through various cytokine signaling that brings about phenotypic changes to cancer cells, thereby promoting migration, invasion, and adhesion of cancer cells. The contrasting results on MSCs as a tool for cancer cytotherapy may be due to the complex cell to cell interaction in the tumor microenvironment, which involves various cell types such as cancer cells, immune cells, endothelial cells, and cancer stem cells. Cell to cell communication can be simple or complex and it is transmitted through various cytokines among multiple cell phenotypes, mechano-elasticity of the extra-cellular matrix surrounding the cancer cells, and hypoxic environments. In this article, the role of the extra-cellular matrix proteins and soluble mediators that acts as communicators between mesenchymal stem cells and cancer cells has been reviewed specifically for breast cancer, as it is the leading member of cancer malignancies. The comprehensive information may be beneficial in finding a new combinatorial cytotherapeutic strategy using MSCs by exploiting the cross-talk between mesenchymal stem cells and cancer cells for treating breast cancer.


Author(s):  
Y.-T. Wu ◽  
A. Adnan

In blast-induced traumatic brain injury, shock waves (SW) play an important role along with cavitation phenomena. Due to the lack of reliable and reproducible experimental investigations, we have a limited understanding of the role of cavitation in brain damage. The present study aims to develop an atomistic simulation model to determine the role of shock-induced impulse and different constituents of the brain’s extra-cellular matrix (ECM) on the formation mechanism, stability and collapsing mechanism of nanobubbles in the ECM. The ECM in the brain can be divided into three major types depending on their location behind the blood-brain barrier, namely (a) the basement membrane (basal lamina), (b) the perineuronal nets and (3) the neural interstitial matrix. In this paper, we have studied the interaction of nanobubbles with bio-molecules of the perineuronal nets. We have chosen this zone of the ECM because we are interested to obtain the role of cavitation bubble collapse in neuron damage. Most biomolecules of perineuronal nets are slender in shape and flexible which is believed to induce special solid-fluid interaction between the fluid domain and the solid domain within the ECM. In addition, perineuronal nets contain a significant number of sodium ions. The relationship between sodium ion and solid-like constituents of perineuronal nets on the stability and the collapsing mechanism of nanobubbles will be discussed.


2019 ◽  
Author(s):  
Wenjing Zheng ◽  
Karen Ocorr ◽  
Marc Tatar

AbstractAldosterone is produced by the mammalian adrenal cortex to modulate blood pressure and fluid balance, however excessive, prolonged aldosterone production promotes fibrosis and kidney failure. How aldosterone triggers disease may involve actions that are independent of its canonical mineralocorticoid receptor. Here we present aDrosophilamodel of renal pathology caused by excess extra-cellular matrix formation, stimulated by exogenous aldosterone and insect ecdysone steroids. Chronic administration of aldosterone or ecdysone induces expression and accumulation of collagen-like pericardin at adult nephrocytes – podocyte-like cells that filter circulating hemolymph. Excess pericardin deposition disrupts nephrocyte (glomerular) filtration and causes proteinuria in Drosophila, hallmarks of mammalian kidney failure. Steroid-induced pericardin arises from cardiomyocytes associated with nephrocytes, reflecting an analogous role of mammalian myofibroblasts in fibrotic disease. Remarkably, the canonical ecdysteroid nuclear hormone receptor, ecdysone receptor EcR, is not required for aldosterone or ecdysone to stimulate pericardin production or associated renal pathology. Instead, these hormones require a cardiomyocyte-associated G-protein coupled receptor, dopamine-EcR (dopEcR), a membrane-associated receptor previously characterized in the fly brain as affecting behavior. ThisDrosophilarenal disease model reveals a novel signaling pathway through which steroids may potentially modulate human fibrosis through proposed orthologs of dopEcR.Significance StatementAldosterone regulates salt and fluid homeostasis, yet excess aldosterone contributes to renal fibrosis. Aldosterone acts through a nuclear hormone receptor, but an elusive, G-protein coupled receptor (GPCR) is thought to also mediate the hormone’s pathology. Here we introduce a Drosophila model of renal fibrosis. Flies treated with human aldosterone produce excess extra-cellular matrix and that causes kidney pathology. Flies treated with the insect steroid ecdysone produce similar pathology, and from this analogous response we identify an alternative receptor through which steroids mediate renal fibrosis -- the GPCR dopamine-Ecdysone Receptor (dopEcR). dopEcR functions in heart muscle cells associated with nephrocytes, analogous to the role of myofibroblasts in human fibrosis. This finding opens avenues to identify mammalian GPCR homologs of dopEcR through which aldosterone mediates renal fibrosis.


Author(s):  
N. Abolfathi ◽  
G. Karami ◽  
M. Ziejewski

Modeling of interactions between cell and extra cellular matrix (ECM) is essential in a cell and tissue injury study. Several studies have been conducted to realize the role of mechanical property of a cell and ECM in a tissue exposed to an external loading. In this study we have used a micromechanical approach by assuming two representative volume elements (RVE) with different packing of cell inside the matrix to characterize the mechanical property of the composite formed by the cell and the ECM in a tissue. In the micromechanical modeling procedure, the cell-ECM adhesion will be studied in detail. The results will clarify the role of cell adhesion in load transferring characteristics inside the cell – ECM composite.


2010 ◽  
Vol 29 (2) ◽  
pp. S65-S65
Author(s):  
P. van der Weide ◽  
A.H. Bruggink ◽  
D.F. van Wichen ◽  
J. van Kuik ◽  
N. de Jonge ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document