Multi-stage cleaner production process with quality improvement and lead time dependent ordering cost

2017 ◽  
Vol 144 ◽  
pp. 572-590 ◽  
Author(s):  
Min-Soo Kim ◽  
Biswajit Sarkar
2019 ◽  
Vol 1 (1) ◽  
pp. 44
Author(s):  
Rony Trizudha ◽  
Sri Rahayuningsih ◽  
Ana Komari

As technology advances at this time, players in business are aware of the importance of product quality in the increasingly fierce competition in the industrial world due to the emergence of many similar companies. Therefore, companies must be able to compete to meet customer desires and try to retain customers. To maintain customers and their marketing areas, companies must have high competitiveness in order to survive by prioritizing quality improvement, increasing efficiency and increasing productivity to improve quality because by increasing quality, products can be accepted among consumers so that company goals can be fulfilled. Therefore, the company must carry out effective quality control which will result in high productivity, lower overall cost of making goods and the factors that cause production failure to be minimized. To improve quality, use the six sigma method, DMAIC and seven tools so that it can be known the cause of the damage and what actions are taken so that there needs to be a controversy to stabilize the processes of the production process so that we can know what percentage of damage and what factors cause damage, therefore there must be measurements and recommendations for improvement and control to reduce the causes From the analysis, it was found that the dent cup was 20.36%, the lid was 21.36% less dense, the lid was damaged in the finished product 18.72%, the cup was 19.28% less thick, the packaging was flexible 20.55%Seiring kemajuan teknologi pada saat ini pelaku di bisnis menyadari akan pentingnya kualitas produk dalam persaingan dunia industri yang semakin ketat karena banyak bermunculan perusahaan-perusahaan sejenis. Oleh sebab itu perusahaan harus dapat bersaing untuk memenuhi keinginan  pelanggan dan berusaha dapat mempertahankan pelanggan. Untuk mempertahankan pelangan dan wilayah pemasaranya perusahaan-perusahaan harus mempunyai daya saing yang tinggi untuk dapat bertahan dengan mengutamakan peningkatan mutu, peningkatan efisiensi dan peningkatan produktivitas untuk meningkatkan kualitas karena dengan peningkatan kualitas, produk dapat diterima di kalangan konsumen sehingga tujuan perusahaan dapat terpenuhi. Maka dari itu perusahaan harus melakukan pengendalian kualitas yang efektif akan menghasilkan produktivitas yang tinggi, biaya pembuatan barang keseluruhan yang lebih  rendah serta  faktor-faktor yang menyebabkan kegagalan produksi akan dapat ditekan sekecil mungkin. Untuk meningkatkan kualitas mengunakan metode six sigma, DMAIC dan seven tools agar dapat diketahui penyebab  kerusakan  dan  tindakan  apa  saja  yang dilakukan sehingga perlu ada kontror untuk menstabilkan  peoses proses produksi sehinga dapat di ketahui berapa persen  kerusakan dan faktor-faktor apa saja yang menyebabkan  kerusakan maka dari itu harus ada pengukuran dan  rekomendasi perbaikan serta melakukan kontrol untuk mengurangi penyebab kerusakan. Dari hasil analisis  di ketahui cup  penyok 20,36%, lid kurang  rapat  21,36%, lid  rusak  pada produk jadi 18,72%,cup kurang tebal 19,28 %kemasan lentur 20,55%


2021 ◽  
pp. 128500
Author(s):  
Lei Fang ◽  
Fuyun Sun ◽  
Qingbao Liu ◽  
Weichao Chen ◽  
Hua Zhou ◽  
...  

2007 ◽  
Vol 54 (5) ◽  
pp. 510-523 ◽  
Author(s):  
Vernon Ning Hsu ◽  
Chung Yee Lee ◽  
Kut C. So
Keyword(s):  

2018 ◽  
Vol 3 (2) ◽  
pp. 101
Author(s):  
Priskila Christine Rahayu ◽  
Vanesa Darvin

This study focused on quality improvement on ceramic tiles production process at PT Arwana Citramulia. This study used data defects for 12 months (May 2016 – April 2017) and only focus on one type of defect and it is chop corner. Six sigma with DMAIC (define, measure, analyze, improve, and control) approach was used to improve the process. Each step of DMAIC was conducted to carefully analyze and keep the process precisely. The ceramic tiles production process contains a number of 4375 products defects in million opportunities (DPMO), with sigma level of 4.13. In the improve step of DMAIC, FMEA form was used to propose some recommendations in order to improve the process, some of that that are provision of lubricant periodically by the operator, polishing on the surface of the liner to clean and clear, examination and maintenance periodically. Keyword : Quality, Six Sigma, DMAIC, Defects.


2019 ◽  
Vol 22 (8) ◽  
pp. 1845-1854 ◽  
Author(s):  
Dujian Zou ◽  
Chengcheng Du ◽  
Tiejun Liu ◽  
Jun Teng ◽  
Hanbin Cheng

The adverse effects caused by differential axial shortening in high-rise buildings have received increasing attention with growing building height. However, the axial shortening analysis still lacks accuracy compared to the in-situ monitoring results of practical high-rise buildings during construction stage. It is imperative to identify the error sources, and the applicability of the current shortening prediction models should be test verified. In this study, 14 plain concrete columns were cast, and the multi-stage load method was applied to approximately simulate the loading history of axial concrete members during construction stage. The time-dependent deformations of loaded concrete specimens were measured, and a comparative analysis was conducted between test results and numerical prediction values. It is found that the measured deformations of multi-stage loading cases are all underestimated compared with predicted results, and this underestimation may be mainly caused by the inappropriate use of elastic modulus. It further indicates that the axial shortening analysis of high-rise buildings tends to underestimate the actual shortening value when the traditional calculation method is used. This study provides a reference for explaining the mismatch between the analytical results and the actual shortening values.


2019 ◽  
Vol 11 (15) ◽  
pp. 4254 ◽  
Author(s):  
Munodawafa ◽  
Johl

Increased greenhouse gas (GHG) emissions in the past decades have created concerns about the environment. To stymie global warming and the deterioration of the natural environment, global CO2 emissions need to reach approximately 1.3 tons per capita by 2050. However, in Malaysia, CO2 output per capita—driven by fossil fuel consumption and energy production—is expected to reach approximately 12.1 tons by the year 2020. GHG mitigation strategies are needed to address these challenges. Cleaner production, through eco-innovation, has the potential to arrest CO2 emissions and buttress sustainable development. However, the cleaner production process has been hampered by lack of complete data to support decision making. Therefore, using the resource-based view, a preliminary study consisting of energy and utility firms is undertaken to understand the impact of big data analytics towards eco-innovation. Linear regression through SPSS Version 24 reveals that big data analytics could become a strong predictor of eco-innovation. This paper concludes that information and data are key inputs, and big data technology provides firms the opportunity to obtain information, which could influence its production process—and possibly help arrest increasing CO2 emissions.


Sign in / Sign up

Export Citation Format

Share Document