scholarly journals Short-time acoustic and hydrodynamic cavitation improves dispersibility and functionality of pectin-rich biopolymers from citrus waste.

2021 ◽  
pp. 129789
Author(s):  
Jin Chu ◽  
Philip Metcalfe ◽  
Holly V. Linford ◽  
Siying Zhao ◽  
Francisco Goycoolea ◽  
...  
Author(s):  
M. Farhat ◽  
A. Chakravarty ◽  
J. E. Field

The majority of the research on cavitation luminescence has focused on the sonoluminescence or chemiluminescence generated by cavitation induced through ultrasound, with a lesser body of work on the luminescence induced by laser- or spark-induced cavitation. In such circumstances, the cavitation is generated in liquids where, on the broad scale, there is usually assumed to be no net liquid flow (although of course there are small-scale flows as a result of the cavitation itself, through radiation forces, streaming, microstreaming and turbulence). Little attention has been paid to the luminescence that accompanies (undesirable) cavitation in pumps and turbines or in marine propellers. In the present study, the sonoluminescence specific to air/water vapour bubbles, collapsing within a cavitation tunnel, is addressed. The particular case of leading edge cavitation over a two-dimensional hydrofoil is considered in detail. Hence, strong instabilities develop, causing the attached cavity to shed large clouds of micro bubbles. The spatial and temporal properties of the emitted luminescence were studied using an intensified charge coupled device video camera and a photomultiplier (PM). The light emission was found to extend downstream from the region of cavity closure, to the region where the travelling vortices collapse. Examination of the PM signal on short time scales showed that the emitted luminescence consisted of relatively intense flashes of short duration (as with other forms of luminescence). Individual flashes were often found to be clustered in time. Over longer time scales, clear evidence of periodicity was found in the PM signals. Further analysis showed that bursts of light were being emitted at the Strouhal frequency (for the shedding of transcient cavities).


Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 51
Author(s):  
Antonino Scurria ◽  
Marzia Sciortino ◽  
Alessandro Presentato ◽  
Claudia Lino ◽  
Elena Piacenza ◽  
...  

An HS-SPME GC-MS analysis of the volatile compounds adsorbed at the outer surface of lemon and grapefruit pectins obtained via the hydrodynamic cavitation of industrial waste streams of lemon and grapefruit peels in water suggests important new findings en route to understanding the powerful and broad biological activity of these new pectic materials. In agreement with the ultralow degree of esterification of these pectins, the high amount of highly bioactive α-terpineol and terpinen-4-ol points to limonene (and linalool) decomposition catalyzed by residual citric acid in the citrus waste peel residue of the juice industrial production.


Author(s):  
Antonino Scurria ◽  
Marzia Sciortino ◽  
Alessandro Presentato ◽  
Claudia Lino ◽  
Elena Piacenza ◽  
...  

The HS-SPME GC-MS analysis of the volatile compounds adsorbed at the outer surface of lemon and grapefruit pectins obtained via hydrodynamic cavitation of industrial waste streams of lemon and grapefruit peels in water only suggests important new findings en route to understanding the powerful and broad biological activity of these new pectic materials. In agreement with the ultralow degree of esterification of these pectins, the high amount of highly bioactive α-terpineol and terpinen-4-ol points to limonene decomposition catalyzed by residual citric acid in the citrus waste peel residue of the juice industrial production.


2018 ◽  
Vol 41 ◽  
Author(s):  
Barbara A. Spellman ◽  
Daniel Kahneman
Keyword(s):  

AbstractReplication failures were among the triggers of a reform movement which, in a very short time, has been enormously useful in raising standards and improving methods. As a result, the massive multilab multi-experiment replication projects have served their purpose and will die out. We describe other types of replications – both friendly and adversarial – that should continue to be beneficial.


2000 ◽  
Vol 179 ◽  
pp. 197-200
Author(s):  
Milan Minarovjech ◽  
Milan Rybanský ◽  
Vojtech Rušin

AbstractWe present an analysis of short time-scale intensity variations in the coronal green line as obtained with high time resolution observations. The observed data can be divided into two groups. The first one shows periodic intensity variations with a period of 5 min. the second one does not show any significant intensity variations. We studied the relation between regions of coronal intensity oscillations and the shape of white-light coronal structures. We found that the coronal green-line oscillations occur mainly in regions where open white-light coronal structures are located.


Author(s):  
P. Maupin-Szamier ◽  
T. D. Pollard

We have studied the destruction of rabbit muscle actin filaments by osmium tetroxide (OSO4) to develop methods which will preserve the structure of actin filaments during preparation for transmission electron microscopy.Negatively stained F-actin, which appears as smooth, gently curved filaments in control samples (Fig. 1a), acquire an angular, distorted profile and break into progressively shorter pieces after exposure to OSO4 (Fig. 1b,c). We followed the time course of the reaction with viscometry since it is a simple, quantitative method to assess filament integrity. The difference in rates of decay in viscosity of polymerized actin solutions after the addition of four concentrations of OSO4 is illustrated in Fig. 2. Viscometry indicated that the rate of actin filament destruction is also dependent upon temperature, buffer type, buffer concentration, and pH, and requires the continued presence of OSO4. The conditions most favorable to filament preservation are fixation in a low concentration of OSO4 for a short time at 0°C in 100mM sodium phosphate buffer, pH 6.0.


Author(s):  
R. Padmanabhan ◽  
W. E. Wood

Intermediate high temperature tempering prior to subsequent reaustenitization has been shown to double the plane strain fracture toughness as compared to conventionally heat treated UHSLA steels, at similar yield strength levels. The precipitation (during tempering) of metal carbides and their subsequent partial redissolution and refinement (during reaustenitization), in addition to the reduction in the prior austenite grain size during the cycling operation have all been suggested to contribute to the observed improvement in the mechanical properties. In this investigation, 300M steel was initially austenitized at 1143°K and then subjected to intermediate tempering at 923°K for 1 hr. before reaustenitizing at 1123°K for a short time and final tempering at 583°K. The changes in the microstructure responsible for the improvement in the properties have been studied and compared with conventionally heat treated steel. Fig. 1 shows interlath films of retained austenite produced during conventionally heat treatment.


Author(s):  
M. J. Carr ◽  
J. F. Shewbridge ◽  
T. O. Wilford

Strong solid state bonds are routinely produced between physical vapor deposited (PVD) silver coatings deposited on sputter cleaned surfaces of two dissimilar metal parts. The low temperature (200°C) and short time (10 min) used in the bonding cycle are advantageous from the standpoint of productivity and dimensional control. These conditions unfortunately produce no microstructural changes at or near the interface that are detectable by optical, SEM, or microprobe examination. Microstructural problems arising at these interfaces could therefore easily go undetected by these techniques. TEM analysis has not been previously applied to this problem because of the difficulty in specimen preparation. The purpose of this paper is to describe our technique for preparing specimens from solid state bonds and to present our initial observations of the microstructural details of such bonds.


Author(s):  
Vladimir Popenko ◽  
Natalya Cherny ◽  
Maria Yakovleva

Highly polyploid somatic nucleus (macronucleus) of ciliate Bursaria truncatella under goes severe changes in morphology during cell division. At first, macronucleus (Ma) condences, diminishes in size and turns perpendicular to longitudinal axis of the cell. After short time, Ma turns again, elongates and only afterwards the process of division itself occurs. The biological meaning of these phenomena is not clear.Localization of RNA in the cells was performed on sections of ciliates B. truncatella, embedded in “Lowicryl K4M” at various stages: (1) before cell division (Figs. 2,3); (11) at the stage of macronucleus condensation; (111) during elongation of Ma (Fig.4); (1111) in young cells (0-5min. after division). For cytochemical labelling we used RNaseAcolloidal gold complexes (RNase-Au), which are known to bind to RNA containing cell ularstructures with high specificity. The influence of different parameters on the reliability and reproducibility of labelling was studied. In addition to the factors, discussed elsewhere, we found that the balance of mono- and bivalent cations is of great significance.


2008 ◽  
Vol 1 (7) ◽  
pp. 10
Author(s):  
KERRI WACHTER
Keyword(s):  
Low Dose ◽  

Sign in / Sign up

Export Citation Format

Share Document