Bioreactor septic tank for on-site wastewater treatment: floating constructed wetland integration

Author(s):  
Tanveer Saeed ◽  
Rumana Afrin ◽  
Abdullah Al-Muyeed ◽  
Md Jihad Miah ◽  
Hasin Jahan
Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3019
Author(s):  
Alberto Fernández del Castillo ◽  
Marycarmen Verduzco Garibay ◽  
Carolina Senés-Guerrero ◽  
Carlos Yebra-Montes ◽  
José de Anda ◽  
...  

Systems combining anaerobic bioreactors with constructed wetlands (CW) have proven to be adequate and efficient for wastewater treatment. Detailed knowledge of removal dynamics of contaminants can ensure positive results for engineering and design. Mathematical modeling is a useful approach to studying the dynamics of contaminant removal in wastewater. In this study, water quality monitoring was performed in a system composed of a septic tank (ST), an up flow anaerobic filter (UAF), and a horizontal flow constructed wetland (HFCW). Biological oxygen demand (BOD5), chemical oxygen demand (COD), total Kjeldahl nitrogen (TKN), NH3, organic nitrogen (ON), total suspended solids (TSS), NO2−, and NO3− were measured biweekly during a 3-month period. First-order kinetics, multiple linear regression, and mass balance models were applied for data adjustment. First-order models were useful to predict the outlet concentration of pollutants (R2 > 0.87). Relevant multiple linear regression models were found, which could be applied to facilitate the system’s monitoring and provide valuable information to control and improve biological and physical processes necessary for wastewater treatment. Finally, the values of important parameters (μmax, Ks,  and Yx/s) in mass-balance models were determined with the aid of a differential neural network (DNN) and an optimization algorithm. The estimated parameters indicated the high robustness of the treatment system since performance stability was found despite variations in wastewater composition.


2018 ◽  
Vol 16 (2) ◽  
pp. 155
Author(s):  
Euis Nurul Hidayah ◽  
Andrysah Djalalembah ◽  
Gina Aprilliana Asmar ◽  
Okik Hendriyanto Cahyonugroho

ABSTRAKPenanganan air limbah domestik Kota Surabaya selama ini dilakukan dengan 2 cara, yakni untuk blackwater dialirkan ke tangki septik dan greywater dialirkan ke drainase tanpa pengolahan. Hal ini menyebabkan peningkatan pencemar pada sungai sebagai air baku. Salah satu teknologi alternatif yang dapat diaplikasikan dengan mudah dan rendah biaya operasional dibanding pengolahan air limbah lainnya adalah constructed wetland dengan menggunakan tanaman Iris pseudoacorus sebagai kombinasi pengolahan biofilter dan proses fitoteknologi. Penelitian ini dilakukan untuk mengetahui efisiensi dari constructed wetland dengan tanaman Iris pseudoacorus untuk mengolah limbah domestik, serta menentukan bagaimana pengaruh dari adanya aerasi dan pengaruh waktu tinggal pada sistem constructed wetland dalam menurunkan bahan organik dan nitrogen pada air limbah. Penelitian ini dilakukan dalam skala uji laboratorium menggunakan reaktor berkapasitas 30 liter. Air limbah dialirkan pada reaktor dengan waktu tinggal 2 hari dan 3 hari, dengan variasi aerasi dan efisiensi pencemar diukur dengan parameter BOD, dan ammonia. Hasil penelitian ini menunjukan bahwa kemampuan penyisihan BOD, dan ammonia dari limbah air domestik oleh reaktor constructed wetland dengan tambahan aerasi dan waktu tinggal selama 4 hari sangat efektif. Reaktor ini mampu menurunkan nilai BOD hingga 96% dan nilai ammonia sebesar 97%.ABSTRACTWastewater domestic in Surabaya City has been treated in two methods, including septic tank for blackwater and directly discharged into drainage system for greywater. This caused an increasing pollutant loading in source water. Constructed wetland with Iris pseudoacorus, one of the alternative natural treatment technology through biofilter and phytotechnology process, could be applied easily and less costly to other treatment. This research was conducted to know the efficiency of constructed wetland with Iris pseudoacorus in domestic wastewater treatment, and to reveal the effect of aeration and detention time in reducing organic and nitrogen content in domestic wastewater. Experiment has been conducted on a laboratory scale of continue aerated reactor and without aeration as control reactor. Detention time (days) 2 and 3 was setup, then sample was taken for BOD and ammonia measurement. The results indicated that constructed wetland with aeration and detention time 4 days had a higher performance to remove BOD up to 96% and ammonia up to 97% than without aeration and less than 4 days process.Keywords: Domestic Wastewater, Constructed Wetland, Phytotechnology, Iris pseudoacorus, Aeration.Sitasi: Hidayah, E. N., Djalalembah, A., Asmar, G.A. dan Cahyonugroho, G.A. (2018). Pengaruh aerasi dalam constructed wetland pada pengolahan air limbah domestik. Jurnal Ilmu Lingkungan, 16(2),155-161, doi:10.14710/jil.16.2.155-161


2020 ◽  
pp. 47-70
Author(s):  
Jasna Grabic ◽  
Nikola Korac ◽  
Zorica Srdjevic ◽  
Pavel Benka

This paper presents the results of a multidisciplinary analysis and the evaluation of a suitable technological solution for wastewater treatment for the villages Backi Breg and Kolut, belonging to the Backo Podunavlje Biosphere Reserve. The research was structured as a three part methodology. It encompassed: 1) citizens? habits on wastewater production - investigated by analysing septic tank waste water quality; 2) stakeholders? opinion on the most important features which a wastewater treatment facility (WWTF) has to fulfil-analysed by interviewing stakeholders and the application of multi-criteria decision support tool and 3) finding the most suitable location for future WWTF by applying geographic information systems (GIS). The results revealed that sampled wastewaters were in range for municipal wastewaters. The decision-making model, based on simple additive weighting (SAW), was defined to evaluate two possible solutions (constructed wetland and sequencing batch reactor) across six criteria. The model showed that a constructed wetland system is more adequate, in comparison to the sequencing batch reactor. Finally, by overlapping multiple GIS map layers the most suitable area for setting up the WWTF was found. The proposed methodology is especially suitable for application in biosphere reserves, since the link social attitude - natural resources exploitation - nature conservation is the key element for achieving sustainability.


2013 ◽  
Vol 39 (1) ◽  
pp. 3-16 ◽  
Author(s):  
Katarzyna Pawęska ◽  
Krzysztof Kuczewski

Abstract The paper presents results of research concerning operating of five small wastewater treatment plants working in two different technologies: hydrobotanical wastewater treatment plant and constructed wetland. Each object was designed for the treatment of domestic sewage after preliminary mechanical treatment in a septic tank. Hydrobotanical wastewater treatment plants and one of constructed wetland beds were built for treating sewage produced in educational institutions and resort. In the article attention is paid to possibility of exceeding the maximum allowable concentration of pollutants for three main indicators of pollution: BOD5, COD, and total suspension. The reduction of these indices is required by the Regulation of the Minister of Environment [14] for wastewater treatment plants with PE < 2000. In addition, the paper presents the effects of wastewater treatment to reduce biogens. The best quality of outflow was reached by outflows from constructed wetland treatment plants. None of the observed objects fulfilled the requirements in terms of allowable concentrations for total suspension. The most effective were objects operating in technology of “constructed wetland”.


2021 ◽  
Vol 4 (1) ◽  
pp. 12
Author(s):  
Fajar Arsyadani ◽  
Monik Kasman ◽  
Ira Galih Prabasari

Siulak Gedang, a village lies on Siulak District, Kabupaten Kerinci which has old common treatment system for its domestic wastewater system. Black water is treated in impermeable septic tank so that the wastewater directly seeps into the ground is discharged into public drains. Meanwhile, grey water is channeled directly into the public drainage. Thus, domestic wastewater treatment is needed for Siulak Gedang Village to avoid water pollution due to the direct discharge of wastewater. The design for domestic wastewater system is divided into 2 parts of wastewater treatment plant (Instalasi Pengolahan Air Limbah = IPAL) that operates simultaneously using anaerobic baffled reactor (ABR) which combined with constructed wetland. Based on the calculation, the peak discharge of population services is 2198,4 m3/day. The IPAL consists of a grease trap as a separator for oil and grease, a collection tank, a distribution tank, an ABR tank as the main processing unit for wastewater and further processing with a constructed wetland in sanitary pool.


2010 ◽  
Vol 5 (4) ◽  
Author(s):  
Viet-Anh Nguyen ◽  
Antoine Morel ◽  
Karin Tonderski

The decentralized wastewater management utilizing existing infrastructure and low-cost natural treatment processes has a large potential in Vietnam. Centralized wastewater collection and treatment systems are often not affordable. Currently the septic tank is the most common on-site wastewater treatment facility in Vietnam. Nevertheless it has a limited treatment performance. The Improved Septic Tank, also known as Baffled Septic Tank with or without Anaerobic Filter (BASTAF or BAST) represents a valuable and promising alternative to the conventional septic tank. Results of laboratory- and pilot-scale research on BAST and BASTAF systems show that at a hydraulic retention time (HRT) of 2 days the 3-chamber BAST followed by Anaerobic Filter significantly increased the removal efficiencies in terms of BOD, COD and TSS in comparison with a conventional septic tank of the same size. Average treatment efficiencies of 80–90% in terms of BOD, COD and TSS can be achieved. Another component of the study showed that post-treatment of BASTAF effluent in a 2-stage vertical flow constructed wetland (CW) planted with locally available macrophytes allowed the achievement of level A, Vietnamese standard for wastewater discharge in terms of COD, BOD5, TSS, TN, NH4-N and T-P. Results of this study are now being implemented in different provinces inVietnam.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1564
Author(s):  
Sara Beck ◽  
Poonyanooch Suwan ◽  
Thusitha Rathnayeke ◽  
Thi Nguyen ◽  
Victor Huanambal-Sovero ◽  
...  

Decentralized wastewater treatment systems enable wastewater to be treated at the source for cleaner discharge into the environment, protecting public health while allowing for reuse for agricultural and other purposes. This study, conducted in Thailand, investigated a decentralized wastewater treatment system incorporating a physical and photochemical process. Domestic wastewater from a university campus and conventional septic tank effluent from a small community were filtered through a woven-fiber microfiltration (WFMF) membrane as pretreatment for ultraviolet (UV) disinfection. In domestic wastewater, WFMF reduced TSS (by 79.8%), turbidity (76.5%), COD (38.5%), and NO3 (41.4%), meeting Thailand irrigation standards for every parameter except BOD. In septic tank effluent, it did not meet Thailand irrigation standards, but reduced TSS (by 77.9%), COD (37.6%), and TKN (13.5%). Bacteria (total coliform and Escherichia coli) and viruses (MS2 bacteriophage) passing through the membrane were disinfected by flow-through UV reactors containing either a low-pressure mercury lamp or light-emitting diodes (LEDs) emitting an average peak wavelength of 276 nm. Despite challenging and variable water quality conditions (2% < UVT < 88%), disinfection was predictable across water types and flow rates for both UV sources using combined variable modeling, which enabled us to estimate log inactivation of other microorganisms. Following UV disinfection, wastewater quality met the WHO standards for unrestricted irrigation.


Sign in / Sign up

Export Citation Format

Share Document