scholarly journals In situ experimental exposure of fruit-bearing shoots of apple trees to 13CO2 and construction of a dynamic transfer model of carbon

2021 ◽  
Vol 233 ◽  
pp. 106595
Author(s):  
Shogo Imada ◽  
Takashi Tani ◽  
Yasuhiro Tako ◽  
Yuki Moriya ◽  
Shun'ichi Hisamatsu
2015 ◽  
Vol 8 (6) ◽  
pp. 2473-2489 ◽  
Author(s):  
J. Ungermann ◽  
J. Blank ◽  
M. Dick ◽  
A. Ebersoldt ◽  
F. Friedl-Vallon ◽  
...  

Abstract. The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) is an airborne infrared limb imager combining a two-dimensional infrared detector with a Fourier transform spectrometer. It was operated aboard the new German Gulfstream G550 High Altitude LOng Range (HALO) research aircraft during the Transport And Composition in the upper Troposphere/lowermost Stratosphere (TACTS) and Earth System Model Validation (ESMVAL) campaigns in summer 2012. This paper describes the retrieval of temperature and trace gas (H2O, O3, HNO3) volume mixing ratios from GLORIA dynamics mode spectra that are spectrally sampled every 0.625 cm−1. A total of 26 integrated spectral windows are employed in a joint fit to retrieve seven targets using consecutively a fast and an accurate tabulated radiative transfer model. Typical diagnostic quantities are provided including effects of uncertainties in the calibration and horizontal resolution along the line of sight. Simultaneous in situ observations by the Basic Halo Measurement and Sensor System (BAHAMAS), the Fast In-situ Stratospheric Hygrometer (FISH), an ozone detector named Fairo, and the Atmospheric chemical Ionization Mass Spectrometer (AIMS) allow a validation of retrieved values for three flights in the upper troposphere/lowermost stratosphere region spanning polar and sub-tropical latitudes. A high correlation is achieved between the remote sensing and the in situ trace gas data, and discrepancies can to a large extent be attributed to differences in the probed air masses caused by different sampling characteristics of the instruments. This 1-D processing of GLORIA dynamics mode spectra provides the basis for future tomographic inversions from circular and linear flight paths to better understand selected dynamical processes of the upper troposphere and lowermost stratosphere.


Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1532 ◽  
Author(s):  
Guido Masiello ◽  
Carmine Serio ◽  
Sara Venafra ◽  
Laurent Poutier ◽  
Frank-M. Göttsche

Timely processing of observations from multi-spectral imagers, such as SEVIRI (Spinning Enhanced Visible and Infrared Imager), largely depends on fast radiative transfer calculations. This paper mostly concerns the development and implementation of a new forward model for SEVIRI to be applied to real time processing of infrared radiances. The new radiative transfer model improves computational time by a factor of ≈7 compared to the previous versions and makes it possible to process SEVIRI data at nearly real time. The new forward model has been applied for the retrieval of surface parameters. Although the scheme can be applied for the simultaneous retrieval of temperature and emissivity, the paper mostly focuses on emissivity. The inverse scheme relies on a Kalman filter approach, which allows us to exploit a sequential processing of SEVIRI observations. Based on the new forward model, the paper also presents a validation retrieval performed with in situ observations acquired during a field experiment carried out in 2017 at Gobabeb (Namib desert) validation station. Furthermore, a comparison with IASI (Infrared Atmospheric Sounder Interferometer) emissivity retrievals has been performed as well. It has been found that the retrieved emissivities are in good agreement with each other and with in situ observations, i.e., average differences are generally well below 0.01.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Zhiqiang He ◽  
Heping Xie ◽  
Mingzhong Gao ◽  
Ling Chen ◽  
Bo Yu ◽  
...  

Deep rock is always under high-temperature conditions. However, traditional coring methods generally have no thermal insulation design, which introduces large deviations in the guidance required for resource mining. Thus, a thermal insulation design that utilizes active and passive thermal insulation was proposed for deep rock corers. The rationale behind the active thermal insulation scheme was to maintain the in situ core temperature through electric heating that was controlled by using a proportional-integral-derivative (PID) chip. Graphene heating material could be used as a heating material for active thermal insulation through testing. In regard to the passive thermal insulation scheme, we conducted insulation and microscopic and insulation effectiveness tests for hollow glass microsphere (HGM) composites and SiO2 aerogels. Results showed that the #1 HGM composite (C1) had an excellent thermal insulation performance (3 mm thick C1 can insulate to 82.6°C), high reflectivity (90.02%), and wide applicability. Therefore, C1 could be used as a passive insulation material in deep rock corers. Moreover, a heat transfer model that considered multiple heat dissipation surfaces was established, which can provide theoretical guidance for engineering applications. Finally, a verification test of the integrated active and passive thermal insulation system (graphene heating material and C1) was carried out. Results showed that the insulating effect could be increased by 13.3%; thus, the feasibility of the integrated thermal insulation system was verified. The abovementioned design scheme and test results provide research basis and guidance for the development of thermally insulated deep rock coring equipment.


2019 ◽  
Author(s):  
Xiaoyi Zhao ◽  
Debora Griffin ◽  
Vitali Fioletov ◽  
Chris McLinden ◽  
Jonathan Davies ◽  
...  

Abstract. Pandora spectrometers can retrieve nitrogen dioxide (NO2) vertical column densities (VCDs) via two viewing geometries: direct-sun and zenith-sky. The direct-sun NO2 VCD measurements have high quality (0.1 DU accuracy in clear-sky conditions) and do not rely on any radiative transfer model to calculate air mass factors (AMFs); however, they are not available when the sun is obscured by clouds. To perform NO2 measurements in cloudy conditions, a simple but robust NO2 retrieval algorithm is developed for Pandora zenith-sky measurements. This algorithm derives empirical zenith-sky NO2 AMFs from coincident high-quality direct-sun NO2 observations. Moreover, the retrieved Pandora zenith-sky NO2 VCD data are converted to surface NO2 concentrations with a scaling algorithm that uses chemical-transport-model predictions and satellite measurements as inputs. NO2 VCDs and surface concentrations are retrieved from Pandora zenith-sky measurements made in Toronto, Canada, from 2015 to 2017. The retrieved Pandora zenith-sky NO2 data (VCD and surface concentration) show good agreement with both satellite and in situ measurements. The diurnal and seasonal variations of derived Pandora zenith-sky surface NO2 data also agree well with in situ measurements (diurnal difference within ±2 ppbv). Overall, this work shows that the new Pandora zenith-sky NO2 products have the potential to be used in various applications such as future satellite validation in moderate cloudy scenes and air quality monitoring.


2020 ◽  
Vol 12 (8) ◽  
pp. 1290 ◽  
Author(s):  
Xu Ma ◽  
Tiejun Wang ◽  
Lei Lu

In modeling the canopy reflectance of row-planted crops, neglecting horizontal radiative transfer may lead to an inaccurate representation of vegetation energy balance and further cause uncertainty in the simulation of canopy reflectance at larger viewing zenith angles. To reduce this systematic deviation, here we refined the four-stream radiative transfer equations by considering horizontal radiation through the lateral “walls”, considered the radiative transfer between rows, then proposed a modified four-stream (MFS) radiative transfer model using single and multiple scattering. We validated the MFS model using both computer simulations and in situ measurements, and found that the MFS model can be used to simulate crop canopy reflectance at different growth stages with an accuracy comparable to the computer simulations (RMSE < 0.002 in the red band, RMSE < 0.019 in NIR band). Moreover, the MFS model can be successfully used to simulate the reflectance of continuous (RMSE = 0.012) and row crop canopies (RMSE < 0.023), and therefore addressed the large viewing zenith angle problems in the previous row model based on four-stream radiative transfer equations. Our results demonstrate that horizontal radiation is an important factor that needs to be considered in modeling the canopy reflectance of row-planted crops. Hence, the refined four-stream radiative transfer model is applicable to the real world.


2020 ◽  
Author(s):  
Sebastian Friedemann ◽  
Bruno Raffin ◽  
Basile Hector ◽  
Jean-Martial Cohard

&lt;p&gt;In situ and in transit computing is an effective way to place postprocessing and preprocessing tasks for large scale simulations on the high performance computing platform. The resulting proximity between the execution of preprocessing, simulation and postprocessing permits to lower I/O by bypassing slow and energy inefficient persistent storages. This permits to scale workflows consisting of heterogeneous components such as simulation, data analysis and visualization, to modern massively parallel high performance platforms. Reordering the workflow components gives a manifold of new advanced data processing possibilities for research. Thus in situ and in transit computing are vital for advances in the domain of geoscientific simulation which relies on the increasing amount of sensor and simulation data available.&lt;/p&gt;&lt;p&gt;In this talk, different in situ and in transit workflows, especially those that are useful in the field of geoscientific simulation, are discussed. Furthermore our experiences augmenting ParFlow-CLM, a physically based, state-of-the-art, fully coupled water transfer model for the critical zone, with FlowVR, an in situ framework with a strict component paradigm, are presented.&lt;br&gt;This allows shadowed in situ file writing, in situ online steering and in situ visualization.&lt;/p&gt;&lt;p&gt;In situ frameworks further can be coupled to data assimilation tools.&lt;br&gt;In the on going EoCoE-II we propose to embed data assimilation codes into an in transit computing environment. This is expected to enable ensemble based data assimilation on continental scale hydrological simulations with multiple thousands of ensemble members.&lt;/p&gt;


2011 ◽  
Vol 68 (4) ◽  
pp. 745-750 ◽  
Author(s):  
Harilal B. Menon ◽  
Nutan Sangekar ◽  
Aneesh Lotliker ◽  
Krishnaswamy Krishna Moorthy ◽  
Ponnumani Vethamony

Abstract Menon, H. B., Sangekar, N., Lotliker, A., Krishna Moorthy, K., and Vethamony, P. 2011. Aerosol optical thickness and spatial variability along coastal and offshore waters of the eastern Arabian Sea. – ICES Journal of Marine Science, 68: 745–750. Data from the ocean-colour monitor (OCM) on board the Indian Remote Sensing Satellite P4 were used to analyse the spatial and temporal distribution of aerosol optical thickness (AOT) over the coastal and offshore waters of the eastern Arabian Sea. Zero water-leaving radiance from the near infrared (NIR) region was assumed for oceanic (open ocean) waters, because of the absorption of long-wave radiation by water molecules. As this assumption fails in coastal waters, it was necessary to correct for water-leaving radiance and sun glint to the NIR bands. The aerosol size-distribution parameter (α) was derived from a relationship between two NIR bands. The Ångström turbidity parameter (β) was obtained using an algorithm relating in situ hand-held, sun-photometer measurements and aerosol radiance (La) at 490 nm. The relationship between β and La (490) was derived with a sensitivity analysis, using a calibrated radiative transfer model. AOTs were retrieved for each pixel of 500 nm. The algorithm's performance was tested by comparing OCM-derived AOT values with in situ AOT and MODIS-derived values. Aerosol maps thus generated from January to December 2005 demonstrate the potential of this new retrieval method for producing AOT climatology from OCM data over coastal waters.


2017 ◽  
Vol 17 (22) ◽  
pp. 13559-13572 ◽  
Author(s):  
Daniel H. Cusworth ◽  
Loretta J. Mickley ◽  
Eric M. Leibensperger ◽  
Michael J. Iacono

Abstract. In situ surface observations show that downward surface solar radiation (SWdn) over the central and southeastern United States (US) has increased by 0.58–1.0 Wm−2 a−1 over the 2000–2014 time frame, simultaneously with reductions in US aerosol optical depth (AOD) of 3.3–5.0  ×  10−3 a−1. Establishing a link between these two trends, however, is challenging due to complex interactions between aerosols, clouds, and radiation. Here we investigate the clear-sky aerosol–radiation effects of decreasing US aerosols on SWdn and other surface variables by applying a one-dimensional radiative transfer to 2000–2014 measurements of AOD at two Surface Radiation Budget Network (SURFRAD) sites in the central and southeastern United States. Observations characterized as clear-sky may in fact include the effects of thin cirrus clouds, and we consider these effects by imposing satellite data from the Clouds and Earth's Radiant Energy System (CERES) into the radiative transfer model. The model predicts that 2000–2014 trends in aerosols may have driven clear-sky SWdn trends of +1.35 Wm−2 a−1 at Goodwin Creek, MS, and +0.93 Wm−2 a−1 at Bondville, IL. While these results are consistent in sign with observed trends, a cross-validated multivariate regression analysis shows that AOD reproduces 20–26 % of the seasonal (June–September, JJAS) variability in clear-sky direct and diffuse SWdn at Bondville, IL, but none of the JJAS variability at Goodwin Creek, MS. Using in situ soil and surface flux measurements from the Ameriflux network and Illinois Climate Network (ICN) together with assimilated meteorology from the North American Land Data Assimilation System (NLDAS), we find that sunnier summers tend to coincide with increased surface air temperature and soil moisture deficits in the central US. The 1990–2015 trends in the NLDAS SWdn over the central US are also of a similar magnitude to our modeled 2000–2014 clear-sky trends. Taken together, these results suggest that climate and regional hydrology in the central US are sensitive to the recent reductions in aerosol concentrations. Our work has implications for severely polluted regions outside the US, where improvements in air quality due to reductions in the aerosol burden could inadvertently pose an enhanced climate risk.


2015 ◽  
Vol 32 (1) ◽  
pp. 61-78 ◽  
Author(s):  
G. Clain ◽  
H. Brogniez ◽  
V. H. Payne ◽  
V. O. John ◽  
M. Luo

AbstractThe Sondeur Atmosphérique du Profil d’Humidité Intertropicale par Radiométrie (SAPHIR) instrument on board the Megha-Tropiques (MT) platform is a cross-track, multichannel microwave humidity sounder with six channels near the 183.31-GHz water vapor absorption line, a maximum scan angle of 42.96° (resulting in a maximum incidence angle of 50.7°), a 1700-km-wide swath, and a footprint resolution of 10 km at nadir. SAPHIR L1A2 brightness temperature (BT) observations have been compared to BTs simulated by the radiative transfer model (RTM) Radiative Transfer for the Television and Infrared Observation Satellite (TIROS) Operational Vertical Sounder (RTTOV-10), using in situ measurements from radiosondes as input. Selected radiosonde humidity observations from the Cooperative Indian Ocean Experiment on Intraseasonal Variability in the Year (CINDY)–Dynamics of the Madden–Julian Oscillation (DYNAMO) campaign (September 2011–March 2012) were spatiotemporally collocated with MT overpasses. Although several sonde systems were used during the campaign, all of the sites selected for this study used the Vaisala RS92-SGPD system and were chosen in order to avoid discrepancies in data quality and biases.To interpret the results of the comparison between the sensor data and the RTM simulations, uncertainties associated with the data processing must be propagated throughout the evaluation. The magnitude of the bias was found to be dependent on the observing channel, increasing from 0.18 K for the 183.31 ± 0.2-GHz channel to 2.3 K for the 183.31 ± 11-GHz channel. Uncertainties and errors that could impact the BT biases were investigated. These can be linked to the RTM input and design, the radiosonde observations, the chosen methodology of comparison, and the SAPHIR instrument itself.


Sign in / Sign up

Export Citation Format

Share Document