Consumption of the edible sea urchin Mesocentrotus nudus attenuates body weight gain and hepatic lipid accumulation in mice

2018 ◽  
Vol 47 ◽  
pp. 40-47 ◽  
Author(s):  
Ryoko Yamamoto ◽  
Hisanori Minami ◽  
Hiromi Matsusaki ◽  
Mami Sakashita ◽  
Naoki Morita ◽  
...  
2020 ◽  
Vol 4 (4) ◽  
Author(s):  
Ting Luo ◽  
Tedd Goldfinger ◽  
Neil Shay

ABSTRACT Background Wine aged in oak barrels will incorporate polyphenols inherent in the staves, suggesting that wine stored in these wooden containers will introduce oak compounds into the human body after consumption. Objective The purpose of the present study is to test whether consumption of these oak compounds could favorably influence metabolism in mice fed an obesogenic diet. Methods C57BL/6  male mice (n = 8) were fed diets for 10 wk as follows: low-fat (LF), high-fat (HF), and HF containing 0.17% of oak tannin (HF+OT). A second 10-wk study was completed; mice were provided LF, HF, and HF diets supplemented with 7.0% of concentrates made from oaked wine (HF+OWC) or unoaked wine (HF+UWC). Physiological parameters were measured during the feeding trial and serum markers and hepatic gene expression measured from samples obtained at necropsy. Results Intake of HF+OT significantly reduced body-weight gain (18.4 ± 1.2 g in HF vs. 13.2 ± 1.4 g in HF+OT, P < 0.05). Serum resistin concentrations were lower in HF+OT mice compared with HF mice (301 ± 10.1 pg/mL in HF+OT vs. 374 ± 10.9 pg/mL in HF; P < 0.05). Hepatic lipid accumulation and expression of glutathione-S-transferase-m2 (Gstm2) and NAD(P)H:quinone oxidoreductase (Nqo1) mRNAs were significantly decreased in HF+OT compared with HF mice (P < 0.05). When compared with HF-fed mice, intake of both OWC and UWC decreased body-weight gain (P < 0.05), with no significant impact on food consumption. Fasting glucose concentrations, serum insulin, and hepatic lipid accumulation were reduced in HF+OWC-fed mice compared with HF+UWC-fed mice (P < 0.05). Furthermore, hepatic glutathione-S-transferase-a1 (Gsta1) mRNA levels were significantly reduced in OWC-supplemented (0.25 ± 0.08) compared with UWC-supplemented (1.71 ± 0.24) mice (P < 0.05). Conclusions In this mouse model of metabolic disease, intake of OTs and a concentrate made from an oaked wine had a potent impact on alleviating HF-induced metabolic syndrome. Thus, intake of OTs, provided passively in oaked wine or as a dietary supplement, may act as an agent to attenuate the markers of metabolic syndrome.


2020 ◽  
Author(s):  
Stefan Tholen ◽  
Kyle M. Kovary ◽  
Atefeh Rabiee ◽  
Ewa Bielczyk-Maczyńska ◽  
Wenting Yang ◽  
...  

ABSTRACTChronic stressors flatten circadian glucocorticoid (GC) oscillations, which has been correlated with negative health outcomes including obesity. How such flattened circadian GC oscillations affect metabolism and fat storage remains unknown. Here we investigated the consequences in mice and found that flattening of GC oscillations results not only in body weight gain, mainly due to increases in white fat depot mass, but also leads to hyperinsulinemia and fat accumulation in brown adipose tissue. A transcriptomic analysis of white and brown adipose tissues revealed that flattened GC oscillations cause dysregulated lipid metabolism with a prominent role of the fatty acid transporter Cd36. Indeed, Cd36 knockout mice are partially protected against the adverse effects of flattened GC oscillations including body weight gain and lipid accumulation in the brown and visceral white fat depots. These results provide insights on how conditions associated with flattened GC levels cause obesity.HIGHLIGHTSFlattening of circadian GC oscillations in mice, despite keeping mean circulating GC levels the same, results in body weight gain, lipid accumulation in both brown and white adipose tissues (BAT and WAT), and hyperinsulinemia.Markedly, flattening GC oscillations for short periods of three days is sufficient to increase lipid accumulation and mass in BAT, but longer periods are needed to increase lipid accumulation and mass in WAT.Transcriptomics analysis shows increased expression of a key regulator of fatty acid uptake, CD36, and knockout of CD36 partially protects cells from flattening GC oscillations


2013 ◽  
Vol 36 (7) ◽  
pp. 897-904 ◽  
Author(s):  
Kung-Woo Nam ◽  
Yong Hyun Kim ◽  
Hyun Jung Kwon ◽  
Sang-Ki Rhee ◽  
Wan-Jong Kim ◽  
...  

2009 ◽  
Vol 102 (3) ◽  
pp. 361-369 ◽  
Author(s):  
M. A. Felmlee ◽  
G. Woo ◽  
E. Simko ◽  
E. S. Krol ◽  
A. D. Muir ◽  
...  

The present study involved a comparative analysis of the effects of purified flaxseed lignans, secoisolariciresinol diglucoside (SDG) and its aglycone metabolite (SECO), in hyperlipidaemic rats. For hypercholesterolaemia, female Wistars (six rats per group) were fed a standard or 1 % cholesterol diet and orally administered 0, 3 or 6 mg SDG/kg or 0, 1·6 or 3·2 mg SECO/kg body weight once daily for 4 weeks. Hypertriacylglycerolaemia was induced in male Sprague–Dawley rats (ten rats per group) by supplementing tap water with 10 % fructose. These rats were orally administered 0, 3 or 6 mg SDG/kg body weight once daily for 2 weeks. Fasting blood samples (12 h) were collected predose and at the end of the dosing period for serum lipid analyses. Rats were killed and livers rapidly excised and sectioned for lipid, mRNA and histological analyses. Chronic administration of equimolar amounts of SDG and SECO caused similar dose-dependent reductions in rate of body-weight gain and in serum total and LDL-cholesterol levels and hepatic lipid accumulation. SDG and SECO failed to alter hepatic gene expression of commonly reported regulatory targets of lipid homeostasis. SDG had no effect on serum TAG, NEFA, phospholipids and rate of weight gain in 10 % fructose-supplemented rats. In conclusion, our data suggest that the lignan component of flaxseed contributes to the hypocholesterolaemic effects of flaxseed consumption observed in humans. Future studies plan to identify the biochemical mechanism(s) through which flaxseed lignans exert their beneficial effects and the lignan form(s) responsible.


2020 ◽  
Vol 21 (12) ◽  
pp. 4256
Author(s):  
Dongju Lee ◽  
Yujin Shin ◽  
Jong Seong Roh ◽  
Jiwon Ahn ◽  
Sunhyo Jeoong ◽  
...  

Our previous studies demonstrated that peroxisome proliferator-activated receptor α (PPARα) activation reduces weight gain and improves insulin sensitivity in obese mice. Since excess lipid accumulation in non-adipose tissues is suggested to be responsible for the development of insulin resistance, this study was undertaken to examine whether the lemon balm extract ALS-L1023 regulates hepatic lipid accumulation, obesity, and insulin resistance and to determine whether its mechanism of action involves PPARα. Administration of ALS-L1023 to high-fat-diet-induced obese mice caused reductions in body weight gain, visceral fat mass, and visceral adipocyte size without changes of food consumption profiles. ALS-L1023 improved hyperglycemia, hyperinsulinemia, glucose and insulin tolerance, and normalized insulin-positive β-cell area in obese mice. ALS-L1023 decreased hepatic lipid accumulation and concomitantly increased the expression of PPARα target genes responsible for fatty acid β-oxidation in livers. In accordance with the in vivo data, ALS-L1023 reduced lipid accumulation and stimulated PPARα reporter gene expression in HepG2 cells. These effects of ALS-L1023 were comparable to those of the PPARα ligand fenofibrate, while the PPARα antagonist GW6471 inhibited the actions of ALS-L1023 on lipid accumulation and PPARα luciferase activity in HepG2 cells. Higher phosphorylated protein kinase B (pAkt)/Akt ratios and lower expression of gluconeogenesis genes were observed in the livers of ALS-L1023-treated mice. These results indicate that ALS-L1023 may inhibit obesity and improve insulin sensitivity in part through inhibition of hepatic lipid accumulation via hepatic PPARα activation.


2021 ◽  
Vol 22 (20) ◽  
pp. 11171
Author(s):  
Maria Vittoria Micioni Di Bonaventura ◽  
Maria Magdalena Coman ◽  
Daniele Tomassoni ◽  
Emanuela Micioni Di Bonaventura ◽  
Luca Botticelli ◽  
...  

Changes in functionality and composition of gut microbiota (GM) have been associated and may contribute to the development and maintenance of obesity and related diseases. The aim of our study was to investigate for the first time the impact of Lactiplantibacillus (L.) plantarum IMC 510 in a rat model of diet-induced obesity, specifically in the cafeteria (CAF) diet. This diet provides a strong motivation to voluntary overeat, due to the palatability and variety of selected energy-dense foods. The oral administration for 84 days of this probiotic strain, added to the CAF diet, decreased food intake and body weight gain. Accordingly, it ameliorated body mass index, liver and white adipose tissue weight, hepatic lipid accumulation, adipocyte size, serum parameters, including glycemia and low-density lipoprotein levels, in CAF fed rats, potentially through leptin control. In this scenario, L. plantarum IMC 510 showed also beneficial effects on GM, limiting the microbial imbalance established by long exposure to CAF diet and preserving the proportion of different bacterial taxa. Further research is necessary to better elucidate the relationship between GM and overweight and then the mechanism of action by which L. plantarum IMC 510 modifies weight. However, these promising results prompt a clear advantage of probiotic supplementation and identify a new potential probiotic as a novel and safe therapeutic approach in obesity prevention and management.


Sign in / Sign up

Export Citation Format

Share Document