scholarly journals Flattened circadian glucocorticoid oscillations cause obesity due to increased lipid turnover and lipid uptake

2020 ◽  
Author(s):  
Stefan Tholen ◽  
Kyle M. Kovary ◽  
Atefeh Rabiee ◽  
Ewa Bielczyk-Maczyńska ◽  
Wenting Yang ◽  
...  

ABSTRACTChronic stressors flatten circadian glucocorticoid (GC) oscillations, which has been correlated with negative health outcomes including obesity. How such flattened circadian GC oscillations affect metabolism and fat storage remains unknown. Here we investigated the consequences in mice and found that flattening of GC oscillations results not only in body weight gain, mainly due to increases in white fat depot mass, but also leads to hyperinsulinemia and fat accumulation in brown adipose tissue. A transcriptomic analysis of white and brown adipose tissues revealed that flattened GC oscillations cause dysregulated lipid metabolism with a prominent role of the fatty acid transporter Cd36. Indeed, Cd36 knockout mice are partially protected against the adverse effects of flattened GC oscillations including body weight gain and lipid accumulation in the brown and visceral white fat depots. These results provide insights on how conditions associated with flattened GC levels cause obesity.HIGHLIGHTSFlattening of circadian GC oscillations in mice, despite keeping mean circulating GC levels the same, results in body weight gain, lipid accumulation in both brown and white adipose tissues (BAT and WAT), and hyperinsulinemia.Markedly, flattening GC oscillations for short periods of three days is sufficient to increase lipid accumulation and mass in BAT, but longer periods are needed to increase lipid accumulation and mass in WAT.Transcriptomics analysis shows increased expression of a key regulator of fatty acid uptake, CD36, and knockout of CD36 partially protects cells from flattening GC oscillations

2000 ◽  
Vol 70 (1) ◽  
pp. 51-61 ◽  
Author(s):  
L. O. W. McClintont ◽  
A. F. Carson

AbstractThis study investigated the efficiency of growth and the carcass characteristics of 24 Greyface (Border Leicester × Scottish Blackface), 24 Texel (12 purebred and 12 Texel × Texel-Greyface) and 24 Rouge (12 purebred and 12 Rouge × Rouge-Greyface) lambs finished on the same level of feeding. The efficiency of live-weight gain (kg/MJ) was higher in Greyface compared with Texel lambs (P< 0·01). The efficiency of empty body-weight gain (kg/MJ) was higher in Greyface (P< 0·01) and Rouge (P< 0·05) compared with Texel lambs. The efficiency of carcass gains (kg/MJ) tended to be higher in Greyface and Rouge compared with Texel lambs (P= 0·07). The efficiency of non-carcass component gains (kg/MJ) was also higher in Greyface compared with Texel lambs (P0·05). Carcass water, protein, lipid and ash gains did not vary significantly between the genotypes, however carcass energy gain tended to be higher in Greyface and Rouge compared with Texel lambs (P= 0·08). The relative proportions of water, protein, lipid and ash in carcass gains did not vary significantly between the genotypes. At the end of the experiment carcass water content was higher in Texel compared with Greyface lambs (P< 0·05) and carcass ash content was lower in Texel compared with Greyface (P< 0·01) and Rouge (P< 0·05) lambs. The concentration of saturated fatty acids was higher in Greyface compared with Rouge lambs (P< 0·001) and higher in Rouge compared with Texel lambs (P< 0·05). Monounsaturated fatty acid concentrations were higher in Rouge compared with Greyface lambs (P< 0·05) and higher in Texel compared with Rouge lambs (P< 0·001). Polyunsaturated fatty acid concentrations were higher in Rouge and Texel compared with Greyface lambs (P< 0·01). The ratio of n-6:n-3 fatty acids was lower in Rouge compared with Greyface lambs (P< 0·05).The efficiency of empty body gain was higher in male compared with female lambs (P< 0·05). Carcass water (P< 0·01) and protein (P< 0·05) gains were higher in male lambs. At the end of the experiment male carcasses contained a higher content of water (P< 0·05), protein (P< 0·01) and ash (P= 0·07), and a lower lipid (P< 0·05) and energy (P< 0·001) content. Carcass lipids from male lambs contained a higher concentration of polyunsaturated fatty acids (P< 0·001) and tended to contain a lower concentration of saturated fatty acids (P = 0·06).


Endocrinology ◽  
2020 ◽  
Vol 161 (4) ◽  
Author(s):  
Qi Zhu ◽  
Jonathan Weng ◽  
Minqian Shen ◽  
Jace Fish ◽  
Zhujun Shen ◽  
...  

Abstract Apolipoprotein A-IV (ApoA-IV) synthesized by the gut regulates lipid metabolism. Sympathetic innervation of adipose tissues also controls lipid metabolism. We hypothesized that ApoA-IV required sympathetic innervation to increase fatty acid (FA) uptake by adipose tissues and brown adipose tissue (BAT) thermogenesis. After 3 weeks feeding of either a standard chow diet or a high-fat diet (HFD), mice with unilateral denervation of adipose tissues received intraperitoneal administration of recombinant ApoA-IV protein and intravenous infusion of lipid mixture with radioactive triolein. In chow-fed mice, ApoA-IV administration increased FA uptake by intact BAT but not the contralateral denervated BAT or intact white adipose tissue (WAT). Immunoblots showed that, in chow-fed mice, ApoA-IV increased expression of lipoprotein lipase and tyrosine hydroxylase in both intact BAT and inguinal WAT (IWAT), while ApoA-IV enhanced protein levels of β3 adrenergic receptor, adipose triglyceride lipase, and uncoupling protein 1 in the intact BAT only. In HFD-fed mice, ApoA-IV elevated FA uptake by intact epididymal WAT (EWAT) but not intact BAT or IWAT. ApoA-IV increased sympathetic activity assessed by norepinephrine turnover (NETO) rate in BAT and EWAT of chow-fed mice, whereas it elevated NETO only in EWAT of HFD-fed mice. These observations suggest that, in chow-fed mice, ApoA-IV activates sympathetic activity of BAT and increases FA uptake by BAT via innervation, while in HFD-fed mice, ApoA-IV stimulates sympathetic activity of EWAT to shunt FAs into the EWAT.


2018 ◽  
Vol 47 ◽  
pp. 40-47 ◽  
Author(s):  
Ryoko Yamamoto ◽  
Hisanori Minami ◽  
Hiromi Matsusaki ◽  
Mami Sakashita ◽  
Naoki Morita ◽  
...  

2021 ◽  
Author(s):  
Wei L Shen ◽  
Hongbin Sun ◽  
Qian Zhou ◽  
Hao Bian ◽  
Mengting Wang ◽  
...  

Mutations in the gene brain-derived neurotrophic factor (BDNF) cause obesity in humans. BDNF signaling and its expressing neurons in the hypothalamus help control feeding, energy expenditure (EE), and physical activity. However, whether the BDNF neurons interact with another EE-regulating system, the thermoregulation circuitry, remains unclear. Here, we show that BDNF neurons in the dorsomedial hypothalamus (DMH) are activated by environmental cooling and sufficient to induce body temperature increases and brown adipose tissue (BAT) thermogenesis. Conversely, blocking these neurons impairs BAT thermogenesis and cold defense, causing body weight gain and glucose intolerance. DMH BDNF neurons are therefore an important type of thermoregulatory neuron, integrating thermal afferent signals to control EE during cold defense. This reveals a critical intersection between the BDNF circuitry and the thermoregulatory system.


Author(s):  
Abere DV

The study investigated the effect of feeding high and low saturated fatty acid based diets to feed female albino rats (Rattusnorvegicus) with a view to evaluating the effects of the fatty diets on the feeding patterns, weight and body composition of the rats. Seven months old female Rattus norvegicus were used for the experiment. The weights of the rats were taken for twelve weeks using Salter balance (Model 250). Four experimental diets were formulated which were made up of 2.5 and 5.0 g of margarine (blue band), 2.5 and 5.0 g canola oil each mixed with the basal diet. The control diet was grower feed and the resultant experimental diets were fed to the experimental rats kept in cages at the rate of 12 rats per cage. The rats were fed with the diets at the rate of 3% of body weight for a period of twelve weeks. The highest weight gain was recorded in the group fed with 5.0 g margarine, followed by 5.0 g canola, 2.5 g margarine, 2.5 g canola and least in the rats fed the control.The mean weight gain of the rats fed with 5.0 g margarine and 5.0 g canola were significantly different (p<0.05) from the mean weight of 2.5 g margarine, 2.5 g canola and the control. The food intake of the rats fed 5.0 g margarine and 5.0 g canola was also significantly different (p<0.05) from the food intake of rats fed 2.5 g margarine, 2.5 g canola and the control. The proximate composition of the carcass of the rats fed the different experimental diets showed that fat content of the rats fed 5.0 g margarine was higher than in the rats fed the other diets. The histology of the liver of rats fed 5.0 g margarine and 5.0 g canola showed greater fat accumulation in the rat’s liver compared to rats fed 2.5 g margarine, 2.5 g canola as well as the control. Rats with the highest body weight gain were considered obesity-prone; those with the lowest body weight were regarded as obesity-resistant while others were considered intermediate. The study concluded that the kind of fat consumed contributes to the weight gained by the rats.


2018 ◽  
Vol 7 (3.7) ◽  
pp. 167
Author(s):  
Jannatara. Khatun ◽  
Teck Chwen Loh ◽  
Henny Akit 1 ◽  
Hooi Ling Foo ◽  
Rosfarizan Mohammad

A study was conducted to evaluate the effect of feeding diet containing palm oil (PO) and sunflower oil (SO) and their combination on bird performance, liver fatty acid profile and meat cholesterol content of broiler. A total of 144 day-old broiler chicks (Cobb) randomly assigned into four dietary treatments and fed for six weeks. The dietary treatments were T1, 6% PO (control); T2, 4% PO + 2% SO; T3, 2% PO + 4% SO; and T4, 6% SO. The body weight gain increased and feed conversion ratio (FCR) reduced with the increasing level of unsaturated fatty acid sources oil (SO) compared to control group (PO). Significantly higher (P<0.05) overall daily body weight gain and lower FCR were found in broilers fed dietary treatments T3 compared to other treatments. However, no differences (P<0.05) were found in daily body weight gain and FCR among the two combination of oil and SO alone. Dietary treatments influence the fatty acid composition of liver and increasing the dietary SO decreased the level of C16:0, C18:0, C18:1n-9, SFA and MUFA and increased the C18:2n-6, UFA: PUFA, UFA: SFA and PUFA: SFA. Birds fed PO had higher cholesterol concentration in meat which was decreased by supplementation of SO in broiler diet. However, cholesterol concentration was not differed in meat among the dietary SO and combination of SO and PO. It could be concluded that supplementation of a combination of PO and SO in broiler diet increased performance, altered the fatty acid composition of liver tissue and decreased cholesterol content of meat which may have a favorable impact on consumer’s health. 


Sign in / Sign up

Export Citation Format

Share Document