scholarly journals Nanoparticles derived from porcine bone soup attenuate oxidative stress-induced intestinal barrier injury in Caco-2 cell monolayer model

2021 ◽  
Vol 83 ◽  
pp. 104573
Author(s):  
Guanzhen Gao ◽  
Jianwu Zhou ◽  
Yongyang Jin ◽  
Huiqin Wang ◽  
Yanan Ding ◽  
...  
Cytokine ◽  
2020 ◽  
Vol 126 ◽  
pp. 154882 ◽  
Author(s):  
Xiaqiong Mao ◽  
Xinyun Qiu ◽  
Chunhua Jiao ◽  
Meijiao Lu ◽  
Xiaojing Zhao ◽  
...  

2007 ◽  
Vol 61 (1) ◽  
pp. 37-41 ◽  
Author(s):  
Luying Peng ◽  
Zhenjuan He ◽  
Wei Chen ◽  
Ian R Holzman ◽  
Jing Lin

2020 ◽  
Vol 48 (01) ◽  
pp. 127-142 ◽  
Author(s):  
Jing Wu ◽  
Cheng-Lin Yang ◽  
Yuan-Kun Sha ◽  
Yong Wu ◽  
Zhao-Ying Liu ◽  
...  

Gelsemium elegans Benth. (G. elegans), a traditional Chinese medicine, has great potential as an effective growth promoter in animals, however, the mechanism of its actin remains unclear. Here, we evaluated the protective effects of koumine extract from G. elegans against lipopolysaccharide (LPS)-induced intestinal barrier dysfunction in IPEC-J2 cells through alleviation of inflammation and oxidative stress. MTT and LDH assays revealed that koumine significantly reduced LPS cytotoxicity. Transepithelial electrical resistance (TEER) and cell monolayer permeability assays showed that koumine treatment attenuated the LPS-induced intestinal barrier dysfunction with no particularly different effects in tight junction proteins such as ZO-1, claudin-1, and occludin. LPS-triggered inflammatory response was also suppressed by koumine, as evidenced by the downregulated inflammatory factors, including TNF-[Formula: see text], IL-6, IL-1[Formula: see text], NO, iNOS, and COX-2, which was closely connected with the inhibition of NF-[Formula: see text]B pathway for the decrease of phosphorylation of I[Formula: see text]B[Formula: see text] and NF-[Formula: see text]B and nuclear translocation of p-p65. Amount of reactive oxygen species (ROS) and MDA induced by LPS was also reduced by koumine through activation of Nrf2 pathway, and increased in the levels of Nrf2 and HO-1 degradation of keap-1 to promote anti-oxidants, including superoxide dismutase (SOD) and catalase (CAT). To summarize, koumine-reduced the oxidative stress and inflammatory reaction triggered by LPS through regulation of the Nrf2/NF-[Formula: see text]B signaling pathway and preventing intestinal barrier dysfunction.


2019 ◽  
Vol 10 (5) ◽  
pp. 2390-2398 ◽  
Author(s):  
Mengdie Chen ◽  
Yuyu Liu ◽  
Shanbai Xiong ◽  
Moucheng Wu ◽  
Bin Li ◽  
...  

The intestinal epithelial layer forms a barrier through cell–cell tight junctions and breaking or even slightly disrupting this barrier can lead to serious pathological consequences, including infection and inflammation.


2021 ◽  
Vol 16 (1) ◽  
pp. 1934578X2098534
Author(s):  
Xuan Cai ◽  
Lihui Zhu ◽  
Xiaofeng Yin ◽  
Huiqin Xue ◽  
Changfeng Xiao ◽  
...  

Orthosiphon stamineus Benth. (Lamiaceae) is commonly used for the treatment of kidney diseases, but its role in intestinal barrier function remains unknown. The present study investigated the protective effects of O. stamineus extract (OE) against oxidative stress-induced injury to the small intestinal epithelium and the possible mechanism. High-performance liquid chromatography fingerprinting was used to analyze OE. Oxidative stress was induced by hydrogen peroxide (1 mM for 1 hour) in an IPEC-J2 cell monolayer model and a high-fat diet in C57BL/6 mice (8 weeks). The malondialdehyde (MDA) content was tested in both models. To evaluate permeability, transepithelial electrical resistance (TEER) was tested in a cell model. Serum diamine oxidase (DAO) and endotoxin contents were determined in a mouse model, and histological sections were analyzed. The messenger ribonucleic acid expression of tight junction proteins was measured by quantitative real-time polymerase chain reaction. Pretreatment with OE (50 µg/mL) increased the IPEC-J2 cell monolayer TEER (12.4%) and decreased MDA (from 6.1 to 4.7 mmol/mg prot). Oral administration of OE (100 mg/kg) decreased serum DAO (34.2%), endotoxin (13.4%), and MDA (from 21.3 to 11.0 mmol/mL) in mice. OE upregulated ZO-1 (42.8% in the cell model and 125.0% in mice) and occluding (127.0% in the cell model and 120.3% in mice) gene expression. These results confirmed the protective effect of OE on the intestinal barrier, which was associated with the antioxidant effect of OE; thus, OE is suitable for the prevention and treatment of intestinal barrier injury.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 160
Author(s):  
Vladana Domazetovic ◽  
Irene Falsetti ◽  
Caterina Viglianisi ◽  
Kristian Vasa ◽  
Cinzia Aurilia ◽  
...  

Vitamin E, a fat-soluble compound, possesses both antioxidant and non-antioxidant properties. In this study we evaluated, in intestinal HT29 cells, the role of natural tocopherols, α-Toc and δ-Toc, and two semi-synthetic derivatives, namely bis-δ-Toc sulfide (δ-Toc)2S and bis-δ-Toc disulfide (δ-Toc)2S2, on TNFα-induced oxidative stress, and intercellular adhesion molecule-1 (ICAM-1) and claudin-2 (Cl-2) expression. The role of tocopherols was compared to that of N-acetylcysteine (NAC), an antioxidant precursor of glutathione synthesis. The results show that all tocopherol containing derivatives used, prevented TNFα-induced oxidative stress and the increase of ICAM-1 and Cl-2 expression, and that (δ-Toc)2S and (δ-Toc)2S2 are more effective than δ-Toc and α-Toc. The beneficial effects demonstrated were due to tocopherol antioxidant properties, but suppression of TNFα-induced Cl-2 expression seems not only to be related with antioxidant ability. Indeed, while ICAM-1 expression is strongly related to the intracellular redox state, Cl-2 expression is TNFα-up-regulated by both redox and non-redox dependent mechanisms. Since ICAM-1 and Cl-2 increase intestinal bowel diseases, and cause excessive recruitment of immune cells and alteration of the intestinal barrier, natural and, above all, semi-synthetic tocopherols may have a potential role as a therapeutic support against intestinal chronic inflammation, in which TNFα represents an important proinflammatory mediator.


Amino Acids ◽  
2021 ◽  
Author(s):  
Tatsuya Hasegawa ◽  
Ami Mizugaki ◽  
Yoshiko Inoue ◽  
Hiroyuki Kato ◽  
Hitoshi Murakami

AbstractIntestinal oxidative stress produces pro-inflammatory cytokines, which increase tight junction (TJ) permeability, leading to intestinal and systemic inflammation. Cystine (Cys2) is a substrate of glutathione (GSH) and inhibits inflammation, however, it is unclear whether Cys2 locally improves intestinal barrier dysfunction. Thus, we investigated the local effects of Cys2 on oxidative stress-induced TJ permeability and intestinal inflammatory responses. Caco-2 cells were cultured in a Cys2-supplemented medium for 24 h and then treated with H2O2 for 2 h. We assessed TJ permeability by measuring transepithelial electrical resistance and the paracellular flux of fluorescein isothiocyanate–dextran 4 kDa. We measured the concentration of Cys2 and GSH after Cys2 pretreatment. The mRNA expression of pro-inflammatory cytokines was assessed. In addition, the levels of TJ proteins were assessed by measuring the expression of TJ proteins in the whole cells and the ratio of TJ proteins in the detergent-insoluble fractions to soluble fractions (IS/S ratio). Cys2 treatment reduced H2O2-induced TJ permeability. Cys2 did not change the expression of TJ proteins in the whole cells, however, suppressed the IS/S ratio of claudin-4. Intercellular levels of Cys2 and GSH significantly increased in cells treated with Cys2. Cys2 treatment suppressed the mRNA expression of pro-inflammatory cytokines, and the mRNA levels were significantly correlated with TJ permeability. In conclusion, Cys2 treatment locally reduced oxidative stress-induced intestinal barrier dysfunction possively due to the mitigation of claudin-4 dislocalization. Furthermore, the effect of Cys2 on the improvement of intestinal barrier function is related to the local suppression of oxidative stress-induced pro-inflammatory responses.


Sign in / Sign up

Export Citation Format

Share Document