Microencapsulation of refined kenaf ( Hibiscus cannabinus L.) seed oil by spray drying using β-cyclodextrin/gum arabic/sodium caseinate

2018 ◽  
Vol 237 ◽  
pp. 78-85 ◽  
Author(s):  
Sook Chin Chew ◽  
Chin Ping Tan ◽  
Kar Lin Nyam
2015 ◽  
Vol 11 (1) ◽  
pp. 61-69 ◽  
Author(s):  
Yen Yi Hee ◽  
Chin Ping Tan ◽  
Russly Abdul Rahman ◽  
Noranizan Mohd Adzahan ◽  
Wee Ting Lai ◽  
...  

Abstract The main objective of this study was to evaluate the influence of the different wall material combinations on the microencapsulation of virgin coconut oil (VCO) by spray drying. Maltodextrin (MD) and sodium caseinate (SC) were used as the basic wall materials and mixed with gum Arabic (GA), whey protein concentrate (WPC) and gelatin (G). The stability, viscosity and droplet size of the feed emulsions were measured. MD:SC showed the best encapsulation efficiency (80.51%) and oxidative stability while MD:SC:GA presented the lowest encapsulation efficiency (62.93%) but better oxidative stability than the other two combinations. Microcapsules produced were sphere in shape with no apparent fissures and cracks, low moisture content (2.35–2.85%) and high bulk density (0.23–0.29 g/cm3). All the particles showed relatively low peroxide value (0.34–0.82 meq peroxide/kg of oil) and good oxidative stability during storage. MD:SC:GA microencapsulated VCO had the highest antioxidant activity in both of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) (0.22 mmol butylated hydroxyanisole (BHA)/kg of oil) and 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays (1.35 mmol trolox/kg of oil).


2021 ◽  
Vol 15 (1) ◽  
pp. 1-9
Author(s):  
Safaa S. Abozed ◽  
Ghada M. Elaraby ◽  
Hamdy A. Zahran

Introduction: Purslane (Portulaca oleracea L.) seeds oil are a non-traditional alpha-linolenic acid source (ALA), which is an omega-3 fatty acid. This study aimed to evaluate the physicochemical and sensory properties of mango juice fortified with purslane seed oil (PSO) microcapsules. Materials and Methods: Gum Arabic (GA) and maltodextrin, as wall-materials, were used in the microencapsulation of PSO by spray drying technique. The spray-dried microcapsules were added to the mango juice (200 mL) at the levels of 0.5, 1 and 1.5 g, ALA. Physicochemical properties such as viscosity, total soluble solids (TSS), pH and titratable acidity were measured, as well as sensory evaluation, during 28 days' storage at 4.0 ±0.5°C. Results: Our study indicated that the microencapsulation of PSO by spray drying resulted in the best microencapsulation yield (85.17%) as well as the microencapsulation efficiency (77.40%). The pH and TSS of four juice samples ranged from 3.0 to 3.6 and from 18.8 to 19.1 Brix°, respectively. In addition to that, storage periods had no significant effect on them. Conclusion: According to the findings presented in this paper, it has been concluded that the nutritional value of mango juices was enhanced by the addition of microencapsulated PSO as a source of ω-3 fatty acids.


2016 ◽  
Vol 25 (1) ◽  
pp. 107 ◽  
Author(s):  
Shannora YULIASARI ◽  
Dedi Fardiaz ◽  
Nuri Andarwulan ◽  
Sri Yuliani

This study aimed to evaluate the effect of maltodextrin combination with different encapsulation materials in the encapsulation of red palm oil by spray drying, in order to maximize encapsulation efficiency and retention of β-carotene. Maltodextrin was combined with xanthan gum (XG), gum arabic (GA), sodium caseinate (SC). The study was designed using a block randomized design with ten treatments and three replicates. The use of different combinations of encapsulation materials in this study had a significant effect (p<0.05) on the characteristic of encapsulates. The best encapsulation efficiency and β-carotene retention were obtained with MD:XG at a combination of 99.7:0.3%, while the lowest encapsulation efficiency and β-carotene retention were obtained for MD:SC. Combination of MD:XG produced encapsulate with 1.03% of surface oil, 92.40% of oil retention, 72.05% of encapsulation efficiency, and 72.65% of β-caroten retention. The mixtures of different encapsulation materials influenced encapsulate morphology. The MD:SC encapsulate had higher dents and folds on encapsulate surface, whereas the combination of MD:XG resulted in a smoother surface of the encapsulate.


Author(s):  
Hirokazu Shiga ◽  
S. Takashige ◽  
A. Hermawan Dwi ◽  
A. Sultana ◽  
Shuji Adachi ◽  
...  

An oil from Pacific krill (Euphausia pacifica) has a high content of PUFAs and phospholipids. The sediment was formed with homogenization of krill oil and maltodextrin (MD; dextrose equivalent (DE) = 19) solution using sodium caseinate, gum arabic, hydrolyzed whey protein or modified starch as a surfactant. Quillaja saponin could form the emulsion without the sediment. MD (28.5 wt%) was solubilized with distiller water (50 wt%) and mixed with krill oil (20wt%) and Quillaja saponin (1.5 wt%). The homogenized solution was spray-dried using Okawara-L8 spray dryer with a centrifugal atomizer.  Spray-dried powder was evaluated in the oil-droplet size and surface-oil content. Keywords: krill oil, emulsion, Quillaja saponin, spray drying, PUFAs 


Author(s):  
Gabriel Ribeiro Carvalho ◽  
Amanda Maria Teixeira Lago ◽  
Maria Cecília Evangelista Vasconcelos Schiassi ◽  
Priscila de Castro e Silva ◽  
Soraia Vilela Borges ◽  
...  

Abstract The objective of this work was to evaluate the partial replacement of gum arabic by modified starches on the spray-drying microencapsulation of lemongrass (Cymbopogon flexuosus) essential oil. The ultrasound-assisted emulsions were prepared with 30% (w/w) of wall material, 7.5% (w/w) of oil load, and 1:1 (w/w) replacement ratio for all treatments. After 16 hours, the incompatibility observed between gum arabic and octenyl succinic anhydride (OSA) starch did not affect the obtained microparticles, since the treatment with OSA starch, partially replacing gum arabic, showed the best results for the process yield and for the oil charge retention after spray-drying process, and the treatment showed Newtonian viscosity close to that of the treatment prepared with gum arabic. Maltodextrin dextrose equivalent 10 (10DE) shows an oil load similar to that of the treatment with gum arabic, while the presence of maize maltodextrin DE20 reduces the content of encapsulated oil and the efficiency of the drying process due to the adherence of particles to the chamber. Therefore, the partial substitution of gum arabic is an alternative for the formation of emulsions, for the spray-drying microencapsulation of lemongrass essential oil.


2017 ◽  
Vol 23 (4) ◽  
pp. 293-300 ◽  
Author(s):  
Parastoo Farshi ◽  
Mahnaz Tabibiazar ◽  
Marjan Ghorbani ◽  
Hamed Hamishehkar

Sign in / Sign up

Export Citation Format

Share Document