Restructuring cookie dough with 3D printing: Relationships between the mechanical properties, baking conditions, and structural changes

2022 ◽  
Vol 319 ◽  
pp. 110911
Author(s):  
Ezgi Pulatsu ◽  
Jheng-Wun Su ◽  
Stuart M. Kenderes ◽  
Jian Lin ◽  
Bongkosh Vardhanabhuti ◽  
...  
Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1544 ◽  
Author(s):  
Fathirrahman Ibrahim ◽  
Denesh Mohan ◽  
Mohd Shaiful Sajab ◽  
Saiful Bahari Bakarudin ◽  
Hatika Kaco

In this study, lignin has been extracted from oil palm empty fruit bunch (EFB) fibers via an organosolv process. The organosolv lignin obtained was defined by the presence of hydroxyl-containing molecules, such as guaiacyl and syringyl, and by the presence of phenolic molecules in lignin. Subsequently, the extracted organosolv lignin and graphene nanoplatelets (GNP) were utilized as filler and reinforcement in photo-curable polyurethane (PU), which is used in stereolithography 3D printing. The compatibility as well as the characteristic and structural changes of the composite were identified through the mechanical properties of the 3D-printed composites. Furthermore, the tensile strength of the composited lignin and graphene shows significant improvement as high as 27%. The hardness of the photo-curable PU composites measured by nanoindentation exhibited an enormous improvement for 0.6% of lignin-graphene at 92.49 MPa with 238% increment when compared with unmodified PU.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4132
Author(s):  
Catalin Gheorghe Amza ◽  
Aurelian Zapciu ◽  
Florin Baciu ◽  
Mihai Ion Vasile ◽  
Adrian Ionut Nicoara

In outdoor environments, the action of the Sun through its ultraviolet radiation has a degrading effect on most materials, with polymers being among those affected. In the past few years, 3D printing has seen an increased usage in fabricating parts for functional applications, including parts destined for outdoor use. This paper analyzes the effect of accelerated aging through prolonged exposure to UV-B on the mechanical properties of parts 3D printed from the commonly used polymers polylactic acid (PLA) and polyethylene terephthalate–glycol (PETG). Samples 3D printed from these materials went through a dry 24 h UV-B exposure aging treatment and were then tested against a control group for changes in mechanical properties. Both the tensile and compressive strengths were determined, as well as changes in material creep characteristics. After irradiation, PLA and PETG parts saw significant decreases in both tensile strength (PLA: −5.3%; PETG: −36%) and compression strength (PLA: −6.3%; PETG: −38.3%). Part stiffness did not change significantly following the UV-B exposure and creep behavior was closely connected to the decrease in mechanical properties. A scanning electron microscopy (SEM) fractographic analysis was carried out to better understand the failure mechanism and material structural changes in tensile loaded, accelerated aged parts.


2012 ◽  
Vol 57 (4) ◽  
pp. 951-974 ◽  
Author(s):  
Andrzej Nowakowski ◽  
Mariusz Młynarczuk

Abstract Temperature is one of the basic factors influencing physical and structural properties of rocks. A quantitative and qualitative description of this influence becomes essential in underground construction and, in particular, in the construction of various underground storage facilities, including nuclear waste repositories. The present paper discusses the effects of temperature changes on selected mechanical and structural parameters of the Strzelin granites. Its authors focused on analyzing the changes of granite properties that accompany rapid temperature changes, for temperatures lower than 573ºC, which is the value at which the β - α phase transition in quartz occurs. Some of the criteria for selecting the temperature range were the results of measurements carried out at nuclear waste repositories. It was demonstrated that, as a result of the adopted procedure of heating and cooling of samples, the examined rock starts to reveal measurable structural changes, which, in turn, induces vital changes of its selected mechanical properties. In particular, it was shown that one of the quantities describing the structure of the rock - namely, the fracture network - grew significantly. As a consequence, vital changes could be observed in the following physical quantities characterizing the rock: primary wave velocity (vp), permeability coefficient (k), total porosity (n) and fracture porosity (η), limit of compressive strength (Rσ1) and the accompanying deformation (Rε1), Young’s modulus (E), and Poisson’s ratio (ν).


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2950
Author(s):  
Hongwei Song ◽  
Xinle Li

The most active research area is nanotechnology in cementitious composites, which has a wide range of applications and has achieved popularity over the last three decades. Nanoparticles (NPs) have emerged as possible materials to be used in the field of civil engineering. Previous research has concentrated on evaluating the effect of different NPs in cementitious materials to alter material characteristics. In order to provide a broad understanding of how nanomaterials (NMs) can be used, this paper critically evaluates previous research on the influence of rheology, mechanical properties, durability, 3D printing, and microstructural performance on cementitious materials. The flow properties of fresh cementitious composites can be measured using rheology and slump. Mechanical properties such as compressive, flexural, and split tensile strength reveal hardened properties. The necessary tests for determining a NM’s durability in concrete are shrinkage, pore structure and porosity, and permeability. The advent of modern 3D printing technologies is suitable for structural printing, such as contour crafting and binder jetting. Three-dimensional (3D) printing has opened up new avenues for the building and construction industry to become more digital. Regardless of the material science, a range of problems must be tackled, including developing smart cementitious composites suitable for 3D structural printing. According to the scanning electron microscopy results, the addition of NMs to cementitious materials results in a denser and improved microstructure with more hydration products. This paper provides valuable information and details about the rheology, mechanical properties, durability, 3D printing, and microstructural performance of cementitious materials with NMs and encourages further research.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4164
Author(s):  
Elizabeth Diederichs ◽  
Maisyn Picard ◽  
Boon Peng Chang ◽  
Manjusri Misra ◽  
Amar Mohanty

Three-dimensional (3D) printing manufactures intricate computer aided designs without time and resource spent for mold creation. The rapid growth of this industry has led to its extensive use in the automotive, biomedical, and electrical industries. In this work, biobased poly(trimethylene terephthalate) (PTT) blends were combined with pyrolyzed biomass to create sustainable and novel printing materials. The Miscanthus biocarbon (BC), generated from pyrolysis at 650 °C, was combined with an optimized PTT blend at 5 and 10 wt % to generate filaments for extrusion 3D printing. Samples were printed and analyzed according to their thermal, mechanical, and morphological properties. Although there were no significant differences seen in the mechanical properties between the two BC composites, the optimal quantity of BC was 5 wt % based upon dimensional stability, ease of printing, and surface finish. These printable materials show great promise for implementation into customizable, non-structural components in the electrical and automotive industries.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1708
Author(s):  
Wenqiang Hua ◽  
Qilang Lin ◽  
Bo Qu ◽  
Yanyu Zheng ◽  
Xiaoying Liu ◽  
...  

Photosensitive resins used in three-dimensional (3D) printing are characterized by high forming precision and fast processing speed; however, they often possess poor mechanical properties and heat resistance. In this study, we report a photocurable bismaleimide ink with excellent comprehensive performance for stereolithography (SLA) 3D printing. First, the main chain of bismaleimide with an amino group (BDM) was synthesized, and then, the glycidyl methacrylate was grafted to the amino group to obtain the bismaleimide oligomer with an unsaturated double bond. The oligomers were combined with reaction diluents and photo-initiators to form photocurable inks that can be used for SLA 3D printing. The viscosity and curing behavior of the inks were studied, and the mechanical properties and heat resistance were tested. The tensile strength of 3D-printed samples based on BDM inks could reach 72.6 MPa (166% of that of commercial inks), glass transition temperature could reach 155 °C (205% of that of commercial inks), and energy storage modulus was 3625 MPa at 35 °C (327% of that of commercial inks). The maximum values of T-5%, T-50%, and Tmax of the 3D samples printed by BDM inks reached 351.5, 449.6, and 451.9 °C, respectively. These photocured BDM inks can be used to produce complex structural components and models with excellent mechanical and thermal properties, such as car parts, building models, and pipes.


2019 ◽  
Vol 254 ◽  
pp. 01018
Author(s):  
František Bárnik ◽  
Milan Vaško ◽  
Milan Sága ◽  
Marián Handrik ◽  
Alžbeta Sapietová

By 3D printing it is possible to create different structures with different fiber-laying directions. These structures can be created depending on the type of 3D printer and its software. The Mark Two printer allows printing Onyx, a material based on nylon in combination with microcarbon fibers. Onyx can be used alone or reinforced with kevlar, glass or carbon fibers. This article deals with 3D printing and evaluation of mechanical properties of printed samples.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5042
Author(s):  
Jaeyoung Kwon ◽  
Junhyeok Ock ◽  
Namkug Kim

3D printing technology has been extensively applied in the medical field, but the ability to replicate tissues that experience significant loads and undergo substantial deformation, such as the aorta, remains elusive. Therefore, this study proposed a method to imitate the mechanical characteristics of the aortic wall by 3D printing embedded patterns and combining two materials with different physical properties. First, we determined the mechanical properties of the selected base materials (Agilus and Dragonskin 30) and pattern materials (VeroCyan and TPU 95A) and performed tensile testing. Three patterns were designed and embedded in printed Agilus–VeroCyan and Dragonskin 30–TPU 95A specimens. Tensile tests were then performed on the printed specimens, and the stress-strain curves were evaluated. The samples with one of the two tested orthotropic patterns exceeded the tensile strength and strain properties of a human aorta. Specifically, a tensile strength of 2.15 ± 0.15 MPa and strain at breaking of 3.18 ± 0.05 mm/mm were measured in the study; the human aorta is considered to have tensile strength and strain at breaking of 2.0–3.0 MPa and 2.0–2.3 mm/mm, respectively. These findings indicate the potential for developing more representative aortic phantoms based on the approach in this study.


Sign in / Sign up

Export Citation Format

Share Document