Oil recovery from refinery oily sludge via ultrasound and freeze/thaw

2012 ◽  
Vol 203-204 ◽  
pp. 195-203 ◽  
Author(s):  
Ju Zhang ◽  
Jianbing Li ◽  
Ronald W. Thring ◽  
Xuan Hu ◽  
Xinyuan Song
Keyword(s):  
Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2163
Author(s):  
Wenying Li ◽  
Hongyang Lin ◽  
Yang Yang ◽  
Zhenxiao Shang ◽  
Qiuhong Li ◽  
...  

Oily sludge (OS) contains a large number of hazardous materials, and froth flotation can achieve oil recovery and non-hazardous disposal of OS simultaneously. The influence of flotation parameters on OS treatment and the flotation mechanism were studied. OS samples were taken from Shengli Oilfield in May 2017 (OSS) and May 2020 (OST), respectively. Results showed that Na2SiO3 was the suitable flotation reagent treating OSS and OST, which could reduce the viscosity between oil and solids. Increasing flotation time, impeller speed and the ratio of liquid to OS could enhance the pulp shear effect, facilitate the formation of bubble and reduce pulp viscosity, respectively. Under the optimized parameters, the oil content of OST residue could be reduced to 1.2%, and that of OSS could be reduced to 0.6% because of OSS with low heavy oil components and wide solid particle size distribution. Orthogonal experimental results showed that the impeller speed was the most significant factor of all parameters for OSS and OST, and it could produce shear force to decrease the intensity of C-H bonds and destabilize the OS. The oil content of residue could be reduced effectively in the temperature range of 24–45 °C under the action of high impeller speed.


2013 ◽  
Vol 67 (12) ◽  
pp. 2875-2881 ◽  
Author(s):  
Evans M. N. Chirwa ◽  
Tshepo Mampholo ◽  
Oluwademilade Fayemiwo

The oil producing and petroleum refining industries dispose of a significant amount of oily sludge annually. The sludge typically contains a mixture of oil, water and solid particles in the form of complex slurry. The oil in the waste sludge is inextractible due to the complex composition and complex interactions in the sludge matrix. The sludge is disposed of on land or into surface water bodies thereby creating toxic conditions or depleting oxygen required by aquatic animals. In this study, a fumed silica mixture with hydrocarbons was used to facilitate stable emulsion (‘Pickering’ emulsion) of the oily sludge. The second step of controlled demulsification and separation of oil and sludge into layers was achieved using either a commercial surfactant (sodium dodecyl sulphate (SDS)) or a cost-effective biosurfactant from living organisms. The demulsification and separation of the oil layer using the commercial surfactant SDS was achieved within 4 hours after stopping mixing, which was much faster than the 10 days required to destabilise the emulsion using crude biosurfactants produced by a consortium of petrochemical tolerant bacteria. The recovery rate with bacteria could be improved by using a more purified biosurfactant without the cells.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Wei Xiao ◽  
Xiao Yao ◽  
Fuyang Zhang

Oily sludge is a hazardous waste containing emulsified petroleum hydrocarbons, water, heavy metals, and solid particles. The objective of this work is to employ solidification/stabilization (S/S) techniques to utilize oily sludge as a roadbed material with ordinary Portland cement (OPC), fly ash (FA), and silica fume (SF) as binders and phosphogypsum (PG) as a stabilizer. The efficacy of the S/S process is assessed mainly through an unconfined compressive strength (UCS) test and a toxicity leaching test. Road performance, including water stability, freeze-thaw resistance, and volume stability, is also tested on the solidified samples. The mineralogical compositions, microstructures, and pore structure are characterized through X-ray diffractometry (XRD), scanning electron microscopy (SEM), and mercury intrusion porosimetry (MIP). The results show that the addition of 20% binders (OPC : FA : SF = 1 : 0.7 : 0.8) in combination with phosphogypsum to the oily sludge not only increases the 28-day compressive strength of the solidified samples and remarkably decreases the release of heavy metals but also refines the pore structure and compacts the microstructure. The solidified body had sufficient strength and good water stability performance, freeze-thaw resistance, and volumetric stability. This solidification/stabilization (S/S) process, which combines oily sludge treatment and phosphogypsum resource utilization, significantly enhances environmental protection and renders the solidified product economically profitable.


2021 ◽  
Vol 37 (1) ◽  
pp. 40-45
Author(s):  
Khamael M. Abualnaja ◽  
Hala M. Abo-Dief ◽  
Ola A. Abu Ali ◽  
Abdullah Al-Anazi ◽  
Ashraf T. Mohamed

The oily sludge treatments catch widespread attention. But, management of sludge is difficult and costly undertaking. The oil recovery pyrolysis temperature, heating rate and carbon wt.% is discussed. The recovered aliphatic, aromatic, elemental components and gases were obtained with respect to the nitrogen flow rate. The present work showed that as the heating rate increases, both the %pyrolysis oil and gases increases up to 600 OC, while the %pyrolysis char decreases. Beyond 600 OC, the pyrolysis gases% increases, the pyrolysis oil% decreases while the %pyrolysis char continuous decreases. Gas chromatography, and calorific value used to examine the hydrocarbon compositions of the virgin, sludge, and pyrolysis oils.


Fuel ◽  
2019 ◽  
Vol 235 ◽  
pp. 460-472 ◽  
Author(s):  
Muhammad Kashif Khan ◽  
Handi Setiadi Cahyadi ◽  
Sung-Min Kim ◽  
Jaehoon Kim

2018 ◽  
Vol 172 ◽  
pp. 481-487 ◽  
Author(s):  
Wanli Feng ◽  
Yao Yin ◽  
Maria de Lourdes Mendoza ◽  
Lidong Wang ◽  
Peng Chen ◽  
...  

2014 ◽  
Vol 955-959 ◽  
pp. 2677-2682 ◽  
Author(s):  
Xian Qing Yin ◽  
Fei Fei Hu ◽  
Bo Jing ◽  
Jian Zhang ◽  
Xi Zhou Shen ◽  
...  

With the rapid implementation of polymer flooding in Bohai oil field, the produced liquid includes large amount of polymer-containing oily sludge reversed increases year by year. The polymer-containing oily sludge accumulates at the terminal processing plant, which not only obviously degrades the performance of sewage treatment instruments and blocks the oil/water separators, but also has a bad impact on environment. Using thermal chemical treatment technology with dynamical separating agent and optimizing separation conditions, the completed processing technology is obtained as follow: thermal chemical reaction, separation on standing, crude oil recovery and recycling of waste water. The recovery rate of crude oil from the samples treatment is over 94%. The obtained technology plays an important role in recycling of source, environment protection and technical support of increasing produced liquid.


1987 ◽  
Vol 66 (8) ◽  
pp. 726-733
Author(s):  
Masakatsu MIURA ◽  
Akira DEGUCHI ◽  
Hiromi TAKEUCHI ◽  
Hideo HOSODA ◽  
Satoru SUZUKI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document