Fate of PAHs In Treated Wastewater Reused as Irrigation Water: Environmental Risks in Water-Soil-Ryegrass Multimedia System

2021 ◽  
pp. 127500
Author(s):  
Jiaman Ma ◽  
Eldon R. Rene ◽  
Zongyao Chen ◽  
Weifang Ma
2015 ◽  
Vol 72 (4) ◽  
pp. 579-584 ◽  
Author(s):  
A. Muramatsu ◽  
H. Ito ◽  
A. Sasaki ◽  
A. Kajihara ◽  
T. Watanabe

To achieve enhanced nitrogen removal, we modified a cultivation system with circulated irrigation of treated municipal wastewater by using rice for animal feed instead of human consumption. The performance of this modified system was evaluated through a bench-scale experiment by comparing the direction of circulated irrigation (i.e. passing through paddy soil upward and downward). The modified system achieved more than three times higher nitrogen removal (3.2 g) than the system in which rice for human consumption was cultivated. The removal efficiency was higher than 99.5%, regardless of the direction of circulated irrigation. Nitrogen in the treated municipal wastewater was adsorbed by the rice plant in this cultivation system as effectively as chemical fertilizer used in normal paddy fields. Circulated irrigation increased the nitrogen released to the atmosphere, probably due to enhanced denitrification. Neither the circulation of irrigation water nor its direction affected the growth of the rice plant and the yield and quality of harvested rice. The yield of rice harvested in this system did not reach the target value in normal paddy fields. To increase this yield, a larger amount of treated wastewater should be applied to the system, considering the significant amount of nitrogen released to the atmosphere.


Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2542 ◽  
Author(s):  
Teresa Tuttolomondo ◽  
Giuseppe Virga ◽  
Mario Licata ◽  
Claudio Leto ◽  
Salvatore La Bella

This paper describes a case study that was carried out on a Sicilian company (Italy) dealing with separate waste collection and recycling of glass. The aims of this study were to evaluate the overall efficiency of a vertical subsurface flow system (VSSFs) constructed wetland (CW) operating for the treatment of first-flush stormwater and the effects of treated wastewater on the morphological and aesthetic characteristics of ornamental pepper and rosemary plants. The system had a total surface area of 46.80 m2 and was planted with common reed and giant reed. Wastewater samples were taken from October 2018 to July 2019 at the CW inlet and outlet for chemical-physical and microbiological characterization of the wastewater. Two separate experimental fields of rosemary and ornamental pepper were set up in another Sicilian location. Three sources of irrigation water, two accessions of rosemary and two varieties of ornamental pepper were tested in a split-plot design for a two-factor experiment. The results showed very high organic pollutant removal (BOD5 75–83%, COD 65–69%) and a good efficiency of nutrients (TN 60–66%) and trace metals (especially for Cu and Zn) removal. Escherichia coli concentration levels were always lower than 100 CFU 100 mL−1 during the test period. Irrigation water and plant habitus had significant effects on all the morphological and aesthetic characteristics of the plants. For both the crops, plants irrigated with freshwater and treated wastewater had greater growth and showed a better general appearance in comparison with plants irrigated with wastewater. The higher trace metal levels in the wastewater produced adverse effects on plant growth and reduced the visual quality of the plants. Our results suggest the suitability of a VSSFs constructed wetland for the treatment of first-flush stormwater and the reuse of treated wastewater for irrigation purposes, in accordance with legislation requirements concerning wastewater quality.


Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1618
Author(s):  
Giuseppe Virga ◽  
Leo Sabatino ◽  
Mario Licata ◽  
Teresa Tuttolomondo ◽  
Claudio Leto ◽  
...  

Aromatic plants can benefit from the use of treated wastewater to satisfy their water requirements, but the effects on the essential oil yield and quality need an assessment. The aims of this study were to assess the effects of freshwater and treated wastewater obtained from a Sicilian (Italy) pilot-scale horizontal subsurface flow constructed wetland system on plant growth and yield, essential oil yield and composition of oregano (Origanum vulgare ssp. hirtum (Link) Ietswaart) and soil characteristics. The system had a total surface area of 100 m2 and was planted with giant reed and umbrella sedge. An experimental open field of oregano was set up close to the system. Two years and two different sources of irrigation water were tested in a split-plot design for a two-factor experiment. Treated wastewater was characterized by higher values of mineral and organic constituents than freshwater. The results highlight that short-term irrigation with freshwater and treated wastewater, in both years, led to increased plant growth, dry weight and essential oil yield of oregano plants. However, it did not significantly affect the essential oil content and composition in comparison with the control. Furthermore, the year and source of irrigation water did not significantly vary the chemical composition of the soil. Our results suggest that treated wastewater can be considered an alternative to freshwater for the cultivation of oregano due to the fact that it does not greatly influence the yield quality and quantity of this species in the short-term.


2020 ◽  
Author(s):  
Vladimir Mirlas ◽  
Yaakov Anker ◽  
Asher Aizenkod ◽  
Naftali Goldshleger

Abstract. Salinization causes soil degradation and soil fertility reduction. The main reasons for soil salinization are poor irrigation water quality and incorrect irrigation management. Soil salinization is accelerated owing to irrigation with treated wastewater with elevated salt concentration. The study area is located in the Beit She'an Valley, one of the most important agricultural regions in Israel. The combination of soil salinization and poor drainage conditions impedes plant development and is manifested in economic damage to crops. Without clear irrigation criteria, an increase in soil salinity and steady damage to soil fertility might occur. The study objective was to provide an assessment of soil salting processes as a result of low-quality irrigation water at the Kibbutz Meirav olive plantation. This study combined various research methods, including soil salinity monitoring, field experiments, remote sensing (FDEM), and unsaturated soil profile saline water movement modeling. The assessment included the salinization processes of chalky soil under drip irrigation by water with various qualities. With a drip irrigation regime of water with a dissolved salt content of 3.13 dS/m, the salinization process is characterized by salts accumulation in the upper root zone of the trees. The modeling results showed that there is a soil salinization danger in using brackish water and that irrigation with potable water helps to reduce soil salinization.


Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2242
Author(s):  
Kledja Canaj ◽  
Domenico Morrone ◽  
Rocco Roma ◽  
Francesca Boari ◽  
Vito Cantore ◽  
...  

The agricultural sector in the Mediterranean region, is increasingly using reclaimed water as an additional source for irrigation. However, there is a limited number of case studies about product-based life cycle analysis to ensure that the overall benefits of reclaimed water do indeed outweigh the impacts. The Life Cycle Assessment (LCA) and Life Cycle Costing (LCC) methods are used in this study to investigate the environmental impacts and costs of vineyard cropping systems when tertiary reclaimed water is used as a supplementary source of irrigation water (integrated system). The conventional production system utilizing 100% groundwater was used as a reference system. As a proxy for sustainability, eco-efficiency, which combines economic and environmental performance, was assessed. The LCA revealed that the integrated system could reduce the net environmental impact by 23.8% due to lower consumption of irrigation water (−50%), electricity (−27.7%), and chemical fertilizers (−22.6%). Nevertheless, trade-offs between economics and the environment occurred as an integrated system is associated with higher life cycle costs and lower economic returns due to lower crop yield (−9.1%). The combined eco-efficiency assessment (ratio of economic value added to total environmental impact) revealed that the integrated system outperformed in terms of eco-efficiency by 12.6% due to lower environmental impacts. These results confirmed that reclaimed water could help to ensure an economically profitable yield with net environmental benefits. Our results provided an up-to-date and consistent life cycle analysis contributing to the creation of a valuable knowledge base for the associated costs and benefits of vineyard cultivation with treated wastewater.


2007 ◽  
Vol 56 (2) ◽  
pp. 103-109 ◽  
Author(s):  
A.R. Mulidzi

A 45 m long, 4 m wide and 1 m deep wetland was constructed at Goudini in 2002 to treat distillery and winery effluent. After the plants were fully established, the wastewater with an average chemical oxygen demand (COD) of 14,000 mg/l was introduced to the wetland system at a rate of 4,050 litres per day. After treatment, wastewater at the outlet had an average COD of 500 mg/ l, indicating more than 90% COD removal. After treatment, the wastewater was used to irrigate cash crops as part of poverty alleviation for farm workers. The experiment consisted of four treatment: clean irrigation water with fertilizer applied (B1); clean irrigation water without fertilizer applied (B2); wastewater irrigation with fertilizer applied (B3); and wastewater irrigation without fertilizer applied (B4). These were replicated seven times. Cabbage was cultivated as a cash crop. The results indicated that cabbage could be irrigated with winery wastewater treated by wetlands. The study found that there was significant difference between treatments that were fertilized compared with those that were not fertilized. The results indicated that wastewater irrigation improved the nutritional status of the soil.


2021 ◽  
Author(s):  
Imen Arfa ◽  
Maria Blanco ◽  
Adrián González-Rosell

<p>To make coherent policies and strategies in the water-food system, it is necessary to analyse the synergies and trade-offs based on indicators approach. Policy coherence is considered a fundamental part of the EU’s contribution to achieving the sustainable development goals (SDGs) and calls for addressing the interlinkages between various SDGs. In this research, key indicators have been identified to analyse policy coherence within the water-food system in Andalusia (Spain). Furthermore, food and water policy scenarios have been simulated using a system dynamics model to evaluate future water-food trends by 2050. These provide a better understanding of how relevant policies are linked, which in turn helps to conduct integrated policy analyses and develop coherent policies and programmes across various dimensions of sustainable development.</p><p>In this region, water availability is a limiting factor for food production. Significant synergies and trade-offs were identified between water saving indicators and food production. An increase in water price causes a decrease in the irrigated area, as well as in irrigation water use. However, water pricing policies also increase crop irrigation water productivity. Agricultural policies that promote alternative sources of water, such as the reuse of treated wastewater, contribute to mitigating water scarcity, especially in the context of adaptation to climate change.</p>


Sign in / Sign up

Export Citation Format

Share Document