In situ scrutinize the adsorption of sulfamethoxazole in water using AFM force spectroscopy: molecular adhesion force determination and fractionation

2021 ◽  
pp. 128128
Author(s):  
Jiayi Wu ◽  
Rui Wang ◽  
Yuyao Zhang ◽  
Baoliang Chen ◽  
Xiaoying Zhu
2021 ◽  
Author(s):  
Adam B. Yasunaga ◽  
Isaac T.S. Li

AbstractRolling adhesion is a unique process in which the adhesion events are short-lived and operate under highly non-equilibrium conditions. These characteristics pose a challenge in molecular force quantification, where in situ measurement of such forces cannot be achieved with most molecular force sensors that probe near equilibrium. In this report, we demonstrated a quantitative adhesion footprint assay combining DNA-based non-equilibrium force probes and modelling to measure the molecular force involved in fast rolling adhesion. We were able to directly profile the ensemble molecular force distribution during rolling adhesion with a dynamic range between 0 – 18 pN. Our results showed that the shear stress driving bead rolling motility directly controls the molecular tension on the probe-conjugated adhesion complex. Furthermore, the shear stress can steer the dissociation bias of components within the molecular force probe complex, favouring either DNA probe dissociation or receptor-ligand dissociation.


Nanoscale ◽  
2020 ◽  
Vol 12 (27) ◽  
pp. 14573-14580
Author(s):  
Min Xu ◽  
Xueyan Feng ◽  
Feng Feng ◽  
Hantao Pei ◽  
Ruping Liu ◽  
...  

Interactions of magnetic nanoparticles with cells were investigated from a cell mechanics perspective, and magnetic nanoparticle-based force spectroscopy was developed as a novel method to measure the adhesion force among various cancer cell lines.


2006 ◽  
Vol 600 (14) ◽  
pp. 2894-2899 ◽  
Author(s):  
Nele Vandamme ◽  
Koen Schouteden ◽  
Johan Snauwaert ◽  
Peter Lievens ◽  
Chris Van Haesendonck

2017 ◽  
Vol 7 (1) ◽  
pp. 100-105 ◽  
Author(s):  
Iaroslav Kovalenko ◽  
Sylvain Verron ◽  
Maryna Garan ◽  
Jiří Šafka ◽  
Michal Moučka

AbstractThis article describes a method of in-situ process monitoring in the digital light processing (DLP) 3D printer. It is based on the continuous measurement of the adhesion force between printing surface and bottom of a liquid resin bath. This method is suitable only for the bottom-up DPL printers. Control system compares the force at the moment of unsticking of printed layer from the bottom of the tank, when it has the largest value in printing cycle, with theoretical value. Implementation of suggested algorithm can make detection of faults during the printing process possible.


Author(s):  
Anton A. Karacharov ◽  
Maxim N. Likhatski

An interaction of potassium buthylxanthate and of dibuthyldixanthogen with metallic Ti, stainless steel and α-TiO2 surfaces was studied. Contact angle measurements by sessile drop technique showed that the treatment of initial substrate surfaces with potassium buthylxanthate aqueous solution or with dibuthyldixanthogen emulsion render them more hydrophobic. Using in situ atomic force spectroscopy, the sorption of surface active substances was shown to give rise to an increase in both adhesive force magnitude and the range within it acts at the approach of cantilever tip to the surface of both hydrophobic and hydrophilic samples. The maximum of both adhesive force and their range, up to 150 nm, took place in case of retract of cantilever tip from sample surface. Force curves are steeper, which related with the formation of nanobubbles on the surfaces of samples under study arising the longrange hydrophobic force of capillary origin. Dibuthyldixanthogen exhibited highly-active reagent properties inducing the formation of nanoscale gas structures on both hydrophobic and, in less extent, hydrophilic surfaces


Nanoscale ◽  
2019 ◽  
Vol 11 (16) ◽  
pp. 7648-7655 ◽  
Author(s):  
Chanchan Yu ◽  
Di Zhang ◽  
Xueyan Feng ◽  
Yahong Chai ◽  
Pan Lu ◽  
...  

Nanoprobe-based force spectroscopy was developed as a new platform to investigate how substrate stiffness regulates the bacterial adhesion force.


2011 ◽  
Vol 380 (1-3) ◽  
pp. 175-181 ◽  
Author(s):  
Jianxi Liu ◽  
Bo Yu ◽  
Baodong Ma ◽  
Xinwang Song ◽  
Xulong Cao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document