Near-infrared Light-mediated Er3+ and Yb3+ co-doped CaTi4O9 for Optical Temperature Sensing Behavior

2020 ◽  
pp. 117737
Author(s):  
Prashansha Singh ◽  
Neha Jain ◽  
Anish Kumar Tiwari ◽  
Shraddha Shukla ◽  
Vikas Baranwal ◽  
...  
2020 ◽  
Author(s):  
Xin Wang ◽  
Xiangping Li ◽  
Hongquan Yu ◽  
Sai Xu ◽  
Jiashi Sun ◽  
...  

Abstract A series of Bi3+ single-doped and Bi3+/Er3+ co-doped YNbO4 phosphors with various concentrations of Bi3+ ions were prepared by a conventional high temperature solid-state reaction method. The results of XRD and Rietveld refinement confirmed that monoclinic phase YNbO4 samples were achieved. The down-/up-conversion luminescence of Er3+ ions were investigated under the excitation of ultraviolet light (327 nm) and near infrared light (980 nm). Under 327 nm excitation, broad visible emission band from Bi3+ ions and characteristic green emission peaks from Er3+ ions were simultaneously observed, while only strong green emissions from Er3+ ions were detected upon excitation of 980 nm. Remarkable emission enhancement was observed in down-/up-conversion luminescence processes by introducing Bi3+ ions into Er3+-doped YNbO4 phosphors. By analyzing the laser working current dependent up-conversion luminescence spectra, two-photon processes were confirmed to be responsible for both the green and the red up-conversion emissions of Er3+ ion. The temperature sensing property of Er3+ was studied by using the temperature dependent up-conversion luminescence spectra and it was found that the temperature sensitivity was sensitive to the doping concentration of Bi3+ ions. By comparing the experimental values of the radiative transition rate ratio of the two green emission levels of Er3+ ions and the theoretical values calculated by Judd-Ofelt (J-O) theory, it was concluded that energy level splitting had significant influences on the temperature sensing property of Er3+ ions.


2020 ◽  
Vol 8 (19) ◽  
pp. 6370-6379 ◽  
Author(s):  
Bhupendra B. Srivastava ◽  
Santosh K. Gupta ◽  
Yuanbing Mao

ZnGa2O4:Yb3+,Er3+,Cr3+ nanoparticles synthesized by a hydrothermal method and further annealing emit bright singular red light under 980 nm excitation and near-infrared light under 254 nm excitation.


Nanoscale ◽  
2014 ◽  
Vol 6 (13) ◽  
pp. 7443-7452 ◽  
Author(s):  
Hui Wang ◽  
Fuyou Ke ◽  
Anton Mararenko ◽  
Zengyan Wei ◽  
Probal Banerjee ◽  
...  

The paper demonstrates the synthesis of carbon-based responsive hybrid nanogels and their applications including sensing, cell imaging and drug delivery.


2021 ◽  
Vol 8 ◽  
Author(s):  
Liang Li ◽  
Haoyue Hao

In this study, the up-conversion luminescence and optical temperature sensing properties of Ho3+/Tm3+/Yb3+-co-doped NaLuF4 phosphors were investigated. The visible (475, 540, and 650 nm) and near-infrared light (692 and 800 nm) radiated from 1Ho3+/4Tm3+/Yb3+-co-doped NaLuF4 phosphors were obvious enough for subsequent detection. The slopes in the lnI–lnP plot of the emissions located in the first biological window (650, 692, and 800 nm) were both ∼1.5, which mean that the power had little effect on the three fluorescence peak ratios. Based on the florescence intensity ratios (FIRs) of 650 and 692 nm, the relative sensing sensitivity reaches 0.029 K−1 (476 K). The relative sensing sensitivity based on the FIRs of 800 and 692 nm reaches 0.0076 K−1 (476 K). The results reveal that 1Ho3+/4Tm3+/Yb3+-co-doped NaLuF4 phosphors have potential applications in FIR-based temperature sensing in biological tissue for their high sensing sensitivity. In addition, the emission colors of the sample stabilize in the white light region as the temperature increased from 303 to 467 K, implying that it can also be used in white display.


2020 ◽  
Vol 59 (11) ◽  
pp. 110906
Author(s):  
Juan Shen ◽  
Yong Ren ◽  
Xinxin Zhu ◽  
Min Mao ◽  
Quan Zhou ◽  
...  

Author(s):  
Xiaowei Luan ◽  
Yongchun Pan ◽  
Yanfeng Gao ◽  
Yujun Song

Light has witnessed the history of mankind and even the universe. It is of great significances to the life of human society, contributing to energy, agriculture, communication, and much more....


Sign in / Sign up

Export Citation Format

Share Document