Influence of cryogenic treatment on mechanical performance of friction stir Al-Zn-Cu alloy weldments

2020 ◽  
Vol 56 ◽  
pp. 43-53
Author(s):  
Anuj Bansal ◽  
Anil Kumar Singla ◽  
Vinay Dwivedi ◽  
Deepak Kumar Goyal ◽  
Jonny Singla ◽  
...  
Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6296
Author(s):  
Anton Naumov ◽  
Evgenii Rylkov ◽  
Pavel Polyakov ◽  
Fedor Isupov ◽  
Andrey Rudskoy ◽  
...  

Friction Stir Welding (FSW) was utilized to butt−join 2024–T4 aluminum alloy plates of 1.9 mm thickness, using tools with conical and tapered hexagonal probe profiles. The characteristic effects of FSW using tools with tapered hexagonal probe profiles include an increase in the heat input and a significant modification of material flow, which have a positive effect on the metallurgical characteristics and mechanical performance of the weld. The differences in mechanical properties were interpreted through macrostructural changes and mechanical properties of the welded joints, which were supported by numerical simulation results on temperature distribution and material flow. The material flow resulting from the tapered hexagonal probe was more complicated than that of the conical probe. If in the first case, the dynamic viscosity and strain rate are homogeneously distributed around the probe, but in the case of the tapered hexagonal probe tool, the zones with maximum values of strain rates and minimum values of dynamic viscosity are located along the six tapered edges of the probe.


Author(s):  
Kulwant Singh ◽  
Gurbhinder Singh ◽  
Harmeet Singh

The weight reduction concept is most effective to reduce the emissions of greenhouse gases from vehicles, which also improves fuel efficiency. Amongst lightweight materials, magnesium alloys are attractive to the automotive sector as a structural material. Welding feasibility of magnesium alloys acts as an influential role in its usage for lightweight prospects. Friction stir welding (FSW) is an appropriate technique as compared to other welding techniques to join magnesium alloys. Field of friction stir welding is emerging in the current scenario. The friction stir welding technique has been selected to weld AZ91 magnesium alloys in the current research work. The microstructure and mechanical characteristics of the produced FSW butt joints have been investigated. Further, the influence of post welding heat treatment (at 260 °C for 1 h) on these properties has also been examined. Post welding heat treatment (PWHT) resulted in the improvement of the grain structure of weld zones which affected the mechanical performance of the joints. After heat treatment, the tensile strength and elongation of the joint increased by 12.6 % and 31.9 % respectively. It is proven that after PWHT, the microhardness of the stir zone reduced and a comparatively smoothened microhardness profile of the FSW joint obtained. No considerable variation in the location of the tensile fracture was witnessed after PWHT. The results show that the impact toughness of the weld joints further decreases after post welding heat treatment.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Jiaheng Li ◽  
Yingbo Zhang ◽  
Xinyu Cao ◽  
Qi Zeng ◽  
Ye Zhuang ◽  
...  

Abstract Aluminum alloys are attractive for a number of applications due to their high specific strength, and developing new compositions is a major goal in the structural materials community. Here, we investigate the Al-Zn-Mg-Cu alloy system (7xxx series) by machine learning-based composition and process optimization. The discovered optimized alloy is compositionally lean with a high ultimate tensile strength of 952 MPa and 6.3% elongation following a cost-effective processing route. We find that the Al8Cu4Y phase in wrought 7xxx-T6 alloys exists in the form of a nanoscale network structure along sub-grain boundaries besides the common irregular-shaped particles. Our study demonstrates the feasibility of using machine learning to search for 7xxx alloys with good mechanical performance.


2017 ◽  
Vol 34 (2) ◽  
pp. 153-160 ◽  
Author(s):  
Yu Chen ◽  
Yifu Jiang ◽  
Hua Ding ◽  
Jingwei Zhao ◽  
Jizhong Li

2010 ◽  
Vol 654-656 ◽  
pp. 1428-1431 ◽  
Author(s):  
Margarita Vargas ◽  
Sri Lathabai

Friction stir processing (FSP) was performed on AA 7075-T6, a heat treatable high strength Al-Zn-Mg-Cu alloy. The two main FSP parameters, the tool rotational and travel speed, were varied systematically in order to understand their influence on the microstructure and mechanical properties of the processed zone. At a given rotational speed, increasing the travel speed increased the microhardness of the nugget (stir) zone; for a given travel speed there appeared to be an optimum rotational speed which resulted in the highest microhardness. The range of FSP parameters used did not significantly influence the nugget zone grain size. It is suggested that the observed mechanical properties are a result of the complex interactions between the FSP thermo-mechanical effects and the processes of dissolution, coarsening and re-precipitation of the strengthening precipitates in this alloy.


2021 ◽  
Vol 39 (11) ◽  
Author(s):  
Arash Fattahi ◽  
E.E. Supeni ◽  
M.K.A. Ariffïn ◽  
M.R. Ishak ◽  
Sahar Zolfaghari ◽  
...  

The energy-saving and environmental conservation are increasingly important issues in manufacturing and service industries worldwide that have received considerable attention in recent years. Most importantly, this process eliminates the grain solidification errors generated by the standard fusion process. Thus, in this papers types and methods of stir welding will be explained and discussed accordingly .   Friction stir spot welding is a tunable method as it allows an effective control and amendment of processing parameters using refill and powder-assisted schemes that can solve the problem of the keyhole and mechanical weaknesses in the joining of light metals processed by conventional Friction stir spot welding. This comprehensive review mainly focuses on the fundamental aspects of Friction stir spot welding processes and their impacts on the microstructural features and mechanical performance and mathematical understanding of various similar and dissimilar systems. To conclude, the challenges in further modification of Friction stir spot welding and future outlooks in different engineering applications are presented.


2019 ◽  
Vol 8 (5) ◽  
pp. 3733-3740 ◽  
Author(s):  
Namrata Gangil ◽  
Sachin Maheshwari ◽  
Arshad Noor Siddiquee ◽  
Mustufa Haider Abidi ◽  
Mohammed A. El-Meligy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document