scholarly journals Understanding dual-frequency ultrasonic melt treatment on grain refinement and mechanical properties improvement of AZ80 magnesium alloy: experiment and simulation

Author(s):  
Xingrui Chen ◽  
Yonghui Jia ◽  
Qichi Le ◽  
Shaochen Ning ◽  
Zhaoyang Yin ◽  
...  
2008 ◽  
Vol 584-586 ◽  
pp. 300-305 ◽  
Author(s):  
Dogan Arpacay ◽  
Sang Bong Yi ◽  
Miloš Janeček ◽  
Adem Bakkaloglu ◽  
Lothar Wagner

The microstructure evolution during high pressure torsion and its influence on the mechanical properties of AZ80 magnesium alloy is presented in this study. Significant grain refinement was observed after high pressure torsion, while the homogeneity of the grain structure increases with the number of revolutions. Grain size decreases to about 50 nm after 15 revolutions. The microhardness profiles measured at through-thickness and through-width directions show no significant variation at different positions of the sample. Moreover, the negligible effect of the revolution number on the microhardness value was observed.


2010 ◽  
Vol 139-141 ◽  
pp. 677-680
Author(s):  
Zhi Qiang Zhang ◽  
Qi Chi Le ◽  
Jian Zhong Cui

The effects of high intensity ultrasonic melt treatment on the microstructure of magnesium alloys were investigated in this paper. Magnesium melts were treated with power ultrasonic wave and then cooled to a predetermined temperature. With the increase in ultrasonic power, the structure exhibited refined and spheroidzed crystal grains. After further increasing the ultrasonic power, the grains tended to somewhat coarsened. Increasing the ultrasonic processing time led to a grain refinement of magnesium alloy.


2010 ◽  
Vol 649 ◽  
pp. 295-300 ◽  
Author(s):  
Katja Pranke ◽  
Klaus Eigenfeld

We investigated the influence of varying amplitudes at constant frequency on the grain size and mechanical properties of magnesium alloy AZ 91. Our experimental setup consists of an ultrasound generator connected to a steel gravity die by screw fitting. Magnesium alloy AZ 91 has been melted in a closed-argon-flooded steel crucible and poured into the die while ultrasound was generated. Cooling curves were recorded during the whole solidification process. The grain size and the mechanical properties were determined and analyzed. As a result, we achieved reduction in grain size as well as an increase in tensile strengths for amplitudes of up to 40% of the maximum amplitude. Yield strengths could be minimally improved in all experiments. The values of elongation and hardness (Brinell) could also be improved for nearly all investigated amplitudes. In summary it is possible to achieve both: grain refinement and increase in tensile strength, hardness and elongation.


Author(s):  
Wenxue Fan ◽  
Hai Hao

Abstract Grain refinement has a significant influence on the improvement of mechanical properties of magnesium alloys. In this study, a series of Al–Ti–C-xGd (x = 0, 1, 2, 3) master alloys as grain refiners were prepared by self-propagating high-temperature synthesis. The synthesis mechanism of the Al–Ti–C-xGd master alloy was analyzed. The effects of Al–Ti–C-xGd master alloys on the grain refinement and mechanical properties of AZ31 (Mg-3Al-1Zn-0.4Mn) magnesium alloys were investigated. The results show that the microstructure of the Al–Ti–C-xGd alloy contains α-Al, TiAl3, TiC and the core–shell structure TiAl3/Ti2Al20Gd. The refining effect of the prepared Al–Ti–C–Gd master alloy is obviously better than that of Al–Ti–C master alloy. The grain size of AZ31 magnesium alloy was reduced from 323 μm to 72 μm when adding 1 wt.% Al–Ti–C-2Gd master alloy. In the same condition, the ultimate tensile strength and elongation of as-cast alloy were increased from 130 MPa, 7.9% to 207 MPa, 16.6% respectively.


2011 ◽  
Vol 291-294 ◽  
pp. 1082-1086
Author(s):  
Yao Jin Wu ◽  
Zhi Ming Zhang ◽  
Bao Cheng Li ◽  
Bao Hong Zhang ◽  
Jian Min Yu ◽  
...  

In the present research, the influences of different extrusion ratios (15, 30, 45, 60, and 75) and extrusion temperature (300°C, 330°C, 360°C, 390°C, 420°C) on the mechanical properties and microstructure changes of AZ80 magnesium alloy have been investigated through tensile test and via ZEISS digital metallographic microscope observation. Research indicates that the alloy’s plasticity gradually decreases as the temperature increases, and that the alloy’s tensile strength varies with the extrusion ratio. At 330°C, the alloy’s particle grain is small and a small amount of black hard and brittle second-phase β (Mg17Al12) are precipitated uniformly along the grain boundary causing the gradual increase of the alloy’s tensile strength. When the extrusion temperature is up to 390°C, the grain size increases significantly, but the second phase precipitation along grain boundaries transforms into continuous and uniform-distribution precipitation within the grain. In this case, when the extrusion ratio is 60, the alloy’s tensile strength reaches its peak 390 Mpa. As the extrusion temperature increases, inhomogeneous precipitation of the second-phase along grain boundaries increases, causing the decrease of the alloy’s strength. At the same temperature, both the tensile strength and plasticity increases firstly and then decreases as extrusion ratio increases. With the gradual increase of the refinement grain, the dispersed precipitates increase and the alloy’s tensile strength and plasticity reach their peaks when the extrusion temperature is 390°C. As the grain grows, the second phase becomes inhomogeneous distribution, and the alloy’s strength and plasticity gradually decrease.


2021 ◽  
Author(s):  
Abdallah Elsayed

For the A1-5Ti-1B grain refiner, the addition of 0.1 wt.% provided a 68 % reduction in grain size as compared to the unrefined AZ91E alloy at a holding time of five minutes. Grain growth restriction by TiB₂ particles was the source of grain refinement. With the addition of A1-5Ti-1B, only a small reduction in hot tearing susceptibility ws observed because large TiA1₃ particles bonded poorly with the eutectic and blocked feeding channels.The addition of 1.0 wt.% A1-1Ti-3B provided a grain size reduction of 63% as compared to the unrefined AZ91E alloy at a holding time of five minutes. The grain refinement with A1-1Ti-3B addition was attributed to a combination of TiB₂ grain growth restriction and A1B₂ nucleating sites. A significant reduction in hot tearing susceptibility was observed with A1-1Ti-3B addition as a result of a higher cooling rate and shorter local soldification time as compared to the AZ91E alloy. The reduction in hot tearing susceptibility was attributed to the good interface between eutectic and TiB₂ particles. Both grain refiners demonstrated a good resistance to fading during the holding times investigated. In addition, the AZ91E + A1-5Ti-1B and AZ91E + A1-1Ti-3B castings showed much fewer dislocation networks as compared to the untreated AZ91E casting.The development of efficient A1-Ti-B refiners can also improve castability of magnesium alloys. In addition, the fade resistant A1-Ti-B grain refiners can reduce operating costs and maintain productivity on the foundry floor. Thus, magnesium alloy with A1-Ti-B treatment have the potential for more demanding structural applications in the automobile and aerospace industries. Vehicle weight in the aerospace and automotive industries directly impacts carbon emissions and fuel efficiency. An increase in the use of lightweight materials for structural applications will result in lighter vehicles. Low density materials, such as magnesium (1.74 g/cm³) are a potential alternative to aluminium (2.70 g/cm³), to reduce component weight in structural applications.However, current magnesium alloys still do not have adequate mechanical properties and castability to meet the performance specifications of the automotive and aerospace industries. Grain refinement can significantly improve mechanical properties and reduce hot tearing during permanent mould casting. Recently, Al-Ti-B based grain refiners have shown potential in grain refining magnesium-aluminum alloys such as AZ91E. This study investigates the grain refining efficiency and fading of A1-5Ti-1B and A1-1Ti-3B in AZ91E magnesium alloy and their subsequent effect on hot tearing.The grain refiners were added at 0.1, 0.2, 0.5 and 1.0 wt.% levels. For the grain refinement and fading experiments, the castings were prepared using graphite moulds with holding times of 5, 10 and 20 minutes. For the hot tearing experiments, castings were produced representing the optimal addition level of each grain refiner. The castings were prepared using a permanent mould with pouring and mould temperatures of 720 and 180 ºC, respectively. The castings were characterized using SEM, TEM, optical microscopy and thermal analysis.


2012 ◽  
Vol 479-481 ◽  
pp. 27-30
Author(s):  
Ju Mei Zhang ◽  
Zhi Hu Wang ◽  
Wan Chang Sun ◽  
Li Bin Niu

The atomic diffusion and mechanical properties of as-cast AZ80 magnesium alloy after solution treatment at different time were studied by OM,SEM,EDS as well as tensile testing. The results show that the coarse β-Mg17Al12 phase distributed along the grain boundaries as net microstructure is almost dissolved after solution treatment, and the content of Al that in the α-Mg matrix is well distributed with the solution time prolonged. Because of the β-Mg17Al12 phase reducing and granulating, the function of precipitates phase strengthening was depressed and the hardness (HB) of alloy dropped obviously. However, the tensile strength(σb ) and elongation(δ) enhanced remarkably and the yield strength (σ0.2) decreased slightly.


2017 ◽  
Vol 35 (5) ◽  
pp. 494-502 ◽  
Author(s):  
Yu ZHANG ◽  
Xiaofeng HUANG ◽  
Ya LI ◽  
Zhenduo MA ◽  
Ying MA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document