Effect of temperature on corrosion behavior of alloy 690 in high temperature hydrogenated water

2018 ◽  
Vol 34 (8) ◽  
pp. 1419-1427 ◽  
Author(s):  
Jiazhen Wang ◽  
Jianqiu Wang ◽  
Hongliang Ming ◽  
Zhiming Zhang ◽  
En-Hou Han
CORROSION ◽  
1991 ◽  
Vol 47 (7) ◽  
pp. 500-508 ◽  
Author(s):  
K. Mabuchi ◽  
Y. Horn ◽  
H. Takahashi ◽  
M. Nagayama

Abstract The corrosion behavior of carbon steel in high-temperature water, and the structure and composition of the oxide film were examined as functions of dissolved oxygen concentration (DO), temperature (T), and corrosion time (t). The total amount of iron corroded (WT) was differentiated into the amounts of iron ions in the oxide (WF) and dissolved into the water (WD). The total rate of corrosion (rT), the rate of iron dissolution (rD), and the rate of accumulation of iron in the oxide (rF) were obtained by differentiating the time variations in WT, WF, and WD. The structure and composition of the oxide film were examined by x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and transmission and scanning electron microscopy. In general, rT increases with increasing DO and T, rD shows T- and DO-dependent minimum, and there is serious localized corrosion at high DO above 500 ppb. Oxide films consist of magnetite except at T=60°C, DO=50 to 200 ppb where a thin layer of hydrous ferric oxide is formed. At DO=500 ppb , the outermost part of the magnetite changes into γ-Fe2O3, and above DO=1.0 ppm, appreciable amounts of α-Fe2O3 cover the magnetite oxide layer. The rT and rD values are not related to the presence of αFe2O3 or Fe3O4 in the surface structure of the oxide, but clearly decrease as the OH−/Fe mole ratio at the oxide surface increases. The mechanism determining the corrosion rate changes is discussed.


2015 ◽  
Vol 19 (8) ◽  
pp. 2265-2273 ◽  
Author(s):  
Zhengang Duan ◽  
Farzin Arjmand ◽  
Lefu Zhang ◽  
Fanjiang Meng ◽  
Hiroaki ABE

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Rui Zhang ◽  
Yujie Meng ◽  
Hejia Song ◽  
Ran Niu ◽  
Yu Wang ◽  
...  

Abstract Background Although exposure to air pollution has been linked to many health issues, few studies have quantified the modification effect of temperature on the relationship between air pollutants and daily incidence of influenza in Ningbo, China. Methods The data of daily incidence of influenza and the relevant meteorological data and air pollution data in Ningbo from 2014 to 2017 were retrieved. Low, medium and high temperature layers were stratified by the daily mean temperature with 25th and 75th percentiles. The potential modification effect of temperature on the relationship between air pollutants and daily incidence of influenza in Ningbo was investigated through analyzing the effects of air pollutants stratified by temperature stratum using distributed lag non-linear model (DLNM). Stratified analysis by sex and age were also conducted. Results Overall, a 10 μg/m3 increment of O3, PM2.5, PM10 and NO2 could increase the incidence risk of influenza with the cumulative relative risk of 1.028 (95% CI 1.007, 1.050), 1.061 (95% CI 1.004, 1.122), 1.043 (95% CI 1.003, 1.085), and 1.118 (95% CI 1.028, 1.216), respectively. Male and aged 7–17 years were more sensitive to air pollutants. Through the temperature stratification analysis, we found that temperature could modify the impacts of air pollution on daily incidence of influenza with high temperature exacerbating the impact of air pollutants. At high temperature layer, male and the groups aged 0–6 years and 18–64 years were more sensitive to air pollution. Conclusion Temperature modified the relationship between air pollution and daily incidence of influenza and high temperature would exacerbate the effects of air pollutants in Ningbo.


2021 ◽  
pp. 109442
Author(s):  
Fangqiang Ning ◽  
Jibo Tan ◽  
Ziyu Zhang ◽  
Xiang Wang ◽  
Xinqiang Wu ◽  
...  

2011 ◽  
Vol 696 ◽  
pp. 272-277 ◽  
Author(s):  
Toto Sudiro ◽  
Tomonori Sano ◽  
Akira Yamauchi ◽  
Shoji Kyo ◽  
Osamu Ishibashi ◽  
...  

The objective of this study is to develop an excellent corrosion resistant alloy for high temperature coating applications. The Si-containing alloys consisting of CoNiCrAlY and CrSi2 alloys with varying Si and Ni content respectively were prepared by spark plasma sintering (SPS) technique. The corrosion behavior of these alloys was investigated in the gas phase of air-(Na2SO4+25.7mass%NaCl) at elevated temperatures of 923, 1073 and 1273K. The results showed that CoNiCrAlY alloy with 30mass% Si content and CrSi2 alloy with 10mass% Ni content were the most effective materials for application in the gas phase of air-(Na2SO4+25.7mass%NaCl) due to the formation of protective Al2O3/SiO2 and SiO2 scale, respectively. Therefore, it is realized that CoNiCrAlY-30mass% Si and CrSi2-10mass% Si coating are very effective for improving of high temperature corrosion resistance of STBA21 steel.


Sign in / Sign up

Export Citation Format

Share Document