The effect and mechanism of C–S–H-PCE nanocomposites on the early strength of mortar under different water-to-cement ratio

2021 ◽  
Vol 44 ◽  
pp. 103360
Author(s):  
Jia-le Zhang ◽  
Zi-ming Wang ◽  
Yu-han Yao ◽  
Rui-feng Tang ◽  
Song-tao Li ◽  
...  
Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 240
Author(s):  
Jianlan Chen ◽  
Jiandong Wang ◽  
Rui He ◽  
Huaizhu Shu ◽  
Chuanqing Fu

This study investigated the effective chloride diffusion coefficient of cement mortar with different water-to-cement ratio (w/c) under electrical accelerated migration measurement. The cumulative chloride concentration in anode cell solution and the cumulative chloride concentration drop in the cathode cell solution was measured by RCT measurement and the results were further used to calculate the chloride diffusion coefficient by Nordtest Build 355 method and Truc method. The influence of w/c on cement mortar’s chloride coefficient was investigated and the chloride diffusion coefficient under different determination methods were compared with other researchers’ work, a good consistency between this work’s results and literatures’ results was obtained. The results indicated that the increased w/c of cement mortar samples will have a higher chloride diffusion coefficient. The cumulative chloride concentration drop in the cathode cell solution will have deviation in early stage measurement (before 60 h) which will result in overestimation of the effective chloride diffusion coefficient.


2012 ◽  
Vol 730-732 ◽  
pp. 271-276
Author(s):  
H.R. Pakravan ◽  
M. Jamshidi ◽  
M. Latifi ◽  
F. Pacheco-Torgal

This paper compares the adhesion strength between three polymeric fibres (polypropylene (PP), nylon66 (N66) and polyacrylonitrile (PAN)) embedded in a cement paste. The specimens were prepared at a water to cement ratio (w/c) of 0.5 and tested after 7, 14 and 28 curing days. It was found that although the adhesion between the polymeric fibres to the cement matrix is an important factor, the energy absorption capacity or energy dissipation ability of the fibres, plays a more important role in the improvement of the cementitious composites fracture toughness. Scanning electron micrographs were used to characterize the fibres surface before and after the Pull-out tests.


1990 ◽  
Vol 17 (1) ◽  
pp. 102-112
Author(s):  
T. Rezansoff ◽  
D. Stott

The influence of CaCl2 or a chloride-based accelerating admixture on the freeze–thaw resistance of concrete was evaluated. Three air entrained mix designs were investigated using ASTM C666-84, Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing. All mix designs were similar, using cement contents of 340–357 kg/m3 of concrete, except for the addition of either 2% calcium chloride or 2% High Early Pozzolith, while no accelerating admixture was added to the control mix. The entire test program was repeated four times with water-to-cement ratio of 0.46 and three times with the ratio of 0.43. For the Pozzolith-accelerated concrete, half the samples were coated with boiled linseed oil in all seven series. For the control (unaccelerated) concrete, half the samples were coated with boiled linseed oil in one series for each water-to-cement ratio. Performance was monitored using the dynamic modulus of elasticity as obtained from transverse resonant frequency measurements. Weight loss of the specimens was also measured. Only the control samples (no accelerators) showed sufficient durability to satisfy the standard of maintaining at least 60% of the original dynamic modulus after 300 cycles of alternate freezing and thawing. Sealing with linseed oil showed inconsistent improvement in the durability in the various test series when defined in terms of the dynamic modulus; however, weight losses were the lowest of all categories and surface scaling was minimal. Key words: concrete, durability, freeze–thaw testing, calcium chloride, admixtures, sealants, air void system.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Kanwaldeep Singh ◽  
Sukhpal Singh ◽  
Gurmel Singh

Six concrete mixtures were prepared with 0%, 20%, 30%, 40%, 50%, and 60% of flyash replacing the cement content and having constant water to cement ratio. The testing specimens were casted and their mechanical parameters were tested experimentally in accordance with the Indian standards. Results of mechanical parameters show their improvement with age of the specimens and results of radiation parameters show no significant effect of flyash substitution on mass attenuation coefficient.


2021 ◽  
Vol 888 ◽  
pp. 67-75
Author(s):  
Ariel Verzosa Melendres ◽  
Napoleon Solo Dela Cruz ◽  
Araceli Magsino Monsada ◽  
Rolan Pepito Vera Cruz

Chloride ingress into concrete from the surrounding environment can result in the corrosion of the embedded steel reinforcement and cause damage to the concrete. Superabsorbent polymer (SAP) with fine particle size was incorporated into the structure of concrete for controlling the chloride ingress and improving its compressive strength via promotion of internal curing. The SAP used in this study was evaluated for its absorbency property when exposed to cementitious environment such as aqueous solution of Ca (OH)2 and cement slurry. The results were compared to that in sodium chloride solution, the environment where absorbency of most of the SAP found in the market are well studied. Results showed that although SAP absorbency decreased with increasing concentration of Ca (OH)2 and cement, the results suggest that water containing cementitious materials are able to be absorbed by SAP. Chloride ingress into 28-day cured concrete specimens were determined using Rapid Chloride Penetration Test (RCPT) method employing 60V DC driving force. Concrete samples with size of 50 mm height x 100 mm diameter were prepared using a M25 mix design with 0.4 and 0.45 water to cement ratios and different percentages of SAP such as 0.05%, 0.1% and 0.15% with respect to cement mass. Results showed that concrete with 0.15% SAP gave the best result with 14% less chloride permeability than concrete with no SAP for a 0.4 water to cement ratio. Concrete samples for compressive strength tests with size of 200 mm height x 100 mm diameter were prepared using the same mix design and percentages of SAP and cured for 28 days. Results showed that the best results for compressive strength was found at 0.1% SAP at a 0.4 water to cement ratio which can be attributed to internal curing provided by SAP.


Sign in / Sign up

Export Citation Format

Share Document