Novel small molecule modulator of the GP130 receptor shows dose dependent therapeutic efficacy in a canine model of osteoarthritis

2021 ◽  
Vol 29 ◽  
pp. S430-S431
Author(s):  
C. Flynn ◽  
E. Lamoure ◽  
N. Liu ◽  
J. Lu ◽  
B. Van Handel ◽  
...  
2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A636-A636
Author(s):  
Maciej Rogacki ◽  
Stefan Chmielewski ◽  
Magdalena Zawadzka ◽  
Jolanta Mazurek ◽  
Katarzyna Wnuk-Lipińska ◽  
...  

BackgroundStimulator of Interferon Genes (STING) is a major player in the activation of robust innate immune response leading to initiation and enhancement of tumor-specific adaptive immunity. Several clinical and pre-clinical programs have shown that activation of the STING pathway triggers immune-mediated antitumor response. Although vast majority of programs focus on development of analogues of the endogenous STING ligands, their chemical nature and stability often limit their use to local administration. Herein, we present recent results from the development of our selective non-nucleotide, non-macrocyclic, small molecule direct STING agonists, suitable for systemic administration, characterized by improved activity in human immune cells.MethodsBinding to recombinant STING protein was examined using FTS, MST, FP and crystallography studies. Phenotypic screen was performed in THP-1 Dual reporter cells. Mouse bone marrow-derived dendritic cells (BMDC) were obtained from C57BL/6 mice and differentiated with mIL-4 and mGM-CSF. STING agonists were administered into BALB/c mice and cytokine release was measured in plasma. Additionally, mice were inoculated with CT26 murine colon carcinoma or EMT6 murine breast carcinoma cells and the compound was administered, followed by the regular tumor growth and body weight monitoring.ResultsRyvu’s small-molecule agonists demonstrate strong binding affinity to recombinant STING proteins across all tested species. The compounds bind to all human STING protein variants and trigger pro-inflammatory cytokine release from human immune cells regardless of the STING haplotype. Moreover, new generation of developed agonists show significantly improved binding to human protein as well as in vitro activity on human cells. Systemic, intravenous in vivo administration leads to a dose-dependent upregulation of STING-dependent pro-inflammatory cytokines, which results in a dose-dependent antitumor efficacy observed in CT26 and EMT6 mouse cancer models, leading to complete tumor remissions in all treated animals. Furthermore, observed efficacy is accompanied by development of a lasting immunological response demonstrated by lack of tumor engraftment or a delayed tumor growth in cured animals challenged with repeated inoculation of cancer cells.ConclusionsNew generation Ryvu’s STING agonists are strong and selective activators of STING-dependent signaling in both mouse and human immune cells promoting anti-tumor immunity. Treatment with Ryvu’s small-molecule STING agonists leads to engagement of the immune system which results in a complete tumor remission and development of immunological memory of the cancer antigens. The compounds show good selectivity and ADME properties enabling development for systemic administration. In addition developed compounds maintain small functional handles amenable to linker attachment making the series suitable for versatile development as single agents, for combinations with immunotherapies or as targeted agents.


2017 ◽  
Vol 292 (40) ◽  
pp. 16571-16577 ◽  
Author(s):  
Raja F. Kawas ◽  
Robert L. Anderson ◽  
Sadie R. Bartholomew Ingle ◽  
Yonghong Song ◽  
Arvinder S. Sran ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253487
Author(s):  
Conrad E. Z. Chan ◽  
Shirley G. K. Seah ◽  
De Hoe Chye ◽  
Shane Massey ◽  
Maricela Torres ◽  
...  

Although SARS-CoV-2-neutralizing antibodies are promising therapeutics against COVID-19, little is known about their mechanism(s) of action or effective dosing windows. We report the generation and development of SC31, a potent SARS-CoV-2 neutralizing antibody, isolated from a convalescent patient. Antibody-mediated neutralization occurs via an epitope within the receptor-binding domain of the SARS-CoV-2 Spike protein. SC31 exhibited potent anti-SARS-CoV-2 activities in multiple animal models. In SARS-CoV-2 infected K18-human ACE2 transgenic mice, treatment with SC31 greatly reduced viral loads and attenuated pro-inflammatory responses linked to the severity of COVID-19. Importantly, a comparison of the efficacies of SC31 and its Fc-null LALA variant revealed that the optimal therapeutic efficacy of SC31 requires Fc-mediated effector functions that promote IFNγ-driven anti-viral immune responses, in addition to its neutralization ability. A dose-dependent efficacy of SC31 was observed down to 5mg/kg when administered before viral-induced lung inflammatory responses. In addition, antibody-dependent enhancement was not observed even when infected mice were treated with SC31 at sub-therapeutic doses. In SARS-CoV-2-infected hamsters, SC31 treatment significantly prevented weight loss, reduced viral loads, and attenuated the histopathology of the lungs. In rhesus macaques, the therapeutic potential of SC31 was evidenced through the reduction of viral loads in both upper and lower respiratory tracts to undetectable levels. Together, the results of our preclinical studies demonstrated the therapeutic efficacy of SC31 in three different models and its potential as a COVID-19 therapeutic candidate.


2001 ◽  
Vol 45 (2) ◽  
pp. 639-640 ◽  
Author(s):  
Sudhir Sharma ◽  
Indu Verma ◽  
G. K. Khuller

ABSTRACT The therapeutic efficacy of human neutrophil peptide 1 (HNP-1) against experimental tuberculosis in mice on the basis of numbers of CFU has been examined. Mice infected with 1.5 × 104CFU of Mycobacterium tuberculosisH37Rv and treated with different doses of HNP-1 injected subcutaneously exhibited significant clearance of bacilli from lungs, livers, and spleens. There were time- and dose-dependent decreases in the bacillary load in lungs, livers, and spleens of the HNP-1-treated animals compared to that in controls (untreated animals). These observations strongly suggest the therapeutic activity of HNP-1 against tuberculosis.


Author(s):  
Dong-Hui Wang ◽  
Li-Jian Chen ◽  
Xu Zhao ◽  
Xiu-Ping Yan

Phototheranostics has attracted great interest in cancer therapy. Small-molecule self-reporting photosensitizers, one kind of idea agents in phototheranostics, enable simultaneous photodynamic therapy (PDT) and feedback of therapeutic efficacy. However, previous...


2021 ◽  
Vol 18 ◽  
Author(s):  
Yoshiaki Sato ◽  
Ikuo Kashiwakura ◽  
Masaru Yamaguchi ◽  
Hironori Yoshino ◽  
Takeshi Tanaka ◽  
...  

Background: Interleukin-6 (IL-6) is a multifunctional cytokine involved in various cell functions and diseases. Thus far, several IL-6 inhibitors, such as, humanized monoclonal antibody have been used to block excessive IL-6 signaling causing autoimmune and inflammatory diseases. However, anti-IL-6 and anti-IL-6 receptor monoclonal antibodies have some clinical disadvantages, such as a high cost, unfavorable injection route, and tendency to mask infectious diseases. While a small-molecule IL-6 inhibitor would help mitigate these issues, none are currently available. Objective: The present study evaluated the biological activities of identified compounds on IL-6 stimulus. Methods: We virtually screened potential IL-6 binders from a compound library using INTerprotein’s Engine for New Drug Design (INTENDD®) followed by the identification of more potent IL-6 binders with artificial intelligence (AI)-guided INTENDD®. The biological activities of the identified compounds were assessed with the IL-6-dependent cell line 7TD1. Results: The compounds showed the suppression of IL-6-dependent cell growth in a dose-dependent manner. Furthermore, the identified compound inhibited expression of IL-6-induced phosphorylation of signal transducer and activator of transcription 3 in a dose-dependent manner. Conclusion: Our screening compound demonstrated an inhibitory effect on IL-6 stimulus. These findings may serve as a basis for the further development of small-molecule IL-6 inhibitors.


2019 ◽  
Vol 11 (514) ◽  
pp. eaau6870 ◽  
Author(s):  
Lena F. Burbulla ◽  
Sohee Jeon ◽  
Jianbin Zheng ◽  
Pingping Song ◽  
Richard B. Silverman ◽  
...  

Mutations in the GBA1 gene encoding the lysosomal enzyme β-glucocerebrosidase (GCase) represent the most common risk factor for Parkinson’s disease (PD). GCase has been identified as a potential therapeutic target for PD and current efforts are focused on chemical chaperones to translocate mutant GCase into lysosomes. However, for several GBA1-linked forms of PD and PD associated with mutations in LRRK2, DJ-1, and PARKIN, activating wild-type GCase represents an alternative approach. We developed a new small-molecule modulator of GCase called S-181 that increased wild-type GCase activity in iPSC-derived dopaminergic neurons from sporadic PD patients, as well as patients carrying the 84GG mutation in GBA1, or mutations in LRRK2, DJ-1, or PARKIN who had decreased GCase activity. S-181 treatment of these PD iPSC-derived dopaminergic neurons partially restored lysosomal function and lowered accumulation of oxidized dopamine, glucosylceramide and α-synuclein. Moreover, S-181 treatment of mice heterozygous for the D409V GBA1 mutation (Gba1D409V/+) resulted in activation of wild-type GCase and consequent reduction of GCase lipid substrates and α-synuclein in mouse brain tissue. Our findings point to activation of wild-type GCase by small-molecule modulators as a potential therapeutic approach for treating familial and sporadic forms of PD that exhibit decreased GCase activity.


Sign in / Sign up

Export Citation Format

Share Document