Determination of food allergens by LC-MS: Impacts of sample preparation, food matrix, and thermal processing on peptide detectability and quantification

2019 ◽  
Vol 196 ◽  
pp. 131-140 ◽  
Author(s):  
Robin Korte ◽  
Daniela Oberleitner ◽  
Jens Brockmeyer
Foods ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 58 ◽  
Author(s):  
Konstantina Ntrallou ◽  
Helen Gika ◽  
Emmanouil Tsochatzis

Color additives are widely used by the food industry to enhance the appearance, as well as the nutritional properties of a food product. However, some of these substances may pose a potential risk to human health, especially if they are consumed excessively and are regulated, giving great importance to their determination. Several matrix-dependent methods have been developed and applied to determine food colorants, by employing different analytical techniques along with appropriate sample preparation protocols. Major techniques applied for their determination are chromatography with spectophotometricdetectors and spectrophotometry, while sample preparation procedures greatly depend on the food matrix. In this review these methods are presented, covering the advancements of existing methodologies applied over the last decade.


2019 ◽  
Vol 15 (7) ◽  
pp. 788-800 ◽  
Author(s):  
Natasa P. Kalogiouri ◽  
Victoria F. Samanidou

Background:The sample preparation is the most crucial step in the analytical method development. Taking this into account, it is easily understood why the domain of sample preparation prior to detection is rapidly developing. Following the modern trends towards the automation, miniaturization, simplification and minimization of organic solvents and sample volumes, green microextraction techniques witness rapid growth in the field of food quality and safety. In a globalized market, it is essential to face the consumers need and develop analytical methods that guarantee the quality of food products and beverages. The strive for the accurate determination of organic hazards in a famous and appreciated alcoholic beverage like wine has necessitated the development of microextraction techniques.Objective:The objective of this review is to summarize all the recent microextraction methodologies, including solid phase extraction (SPE), solid phase microextraction (SPME), liquid-phase microextraction (LPME), dispersive liquid-liquid microextraction (DLLME), stir bar sorptive extraction (SBSE), matrix solid-phase dispersion (MSPD), single-drop microextraction (SDME) and dispersive solid phase extraction (DSPE) that were developed for the determination of hazardous organic compounds (pesticides, mycotoxins, colorants, biogenic amines, off-flavors) in wine. The analytical performance of the techniques is evaluated and their advantages and limitations are discussed.Conclusion:An extensive investigation of these techniques remains vital through the development of novel strategies and the implication of new materials that could upgrade the selectivity for the extraction of target analytes.


Toxics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 60
Author(s):  
Tobias Hartwig Bünning ◽  
Jennifer Susanne Strehse ◽  
Ann Christin Hollmann ◽  
Tom Bötticher ◽  
Edmund Maser

To determine the amount of the explosives 1,3-dinitrobenzene, 2,4-dinitrotoluene, 2,4,6-trinitrotoluene, and its metabolites in marine samples, a toolbox of methods was developed to enhance sample preparation and analysis of various types of marine samples, such as water, sediment, and different kinds of biota. To achieve this, established methods were adapted, improved, and combined. As a result, if explosive concentrations in sediment or mussel samples are greater than 10 ng per g, direct extraction allows for time-saving sample preparation; if concentrations are below 10 ng per g, techniques such as freeze-drying, ultrasonic, and solid-phase extraction can help to detect even picogram amounts. Two different GC-MS/MS methods were developed to enable the detection of these explosives in femtogram per microliter. With a splitless injector, limits of detection (LODs) between 77 and 333 fg/µL could be achieved in only 6.25 min. With the 5 µL programmable temperature vaporization—large volume method (PTV-LVI), LODs between 8 and 47 fg/µL could be achieved in less than 7 min. The detection limits achieved by these methods are among the lowest published to date. Their reliability has been tested and confirmed by measuring large and diverse sample sets.


Medicina ◽  
2021 ◽  
Vol 57 (7) ◽  
pp. 679
Author(s):  
Monica Iuliana Ungureanu ◽  
Liliana Sachelarie ◽  
Radu Ciorap ◽  
Bogdan Aurelian Stana ◽  
Irina Croitoru ◽  
...  

Background and Objectives: Different types of food introduced gradually in the diet will expose children to different food allergens, increasing the chance of developing allergic diseases. The aim of our study was to determine if allergen-specific IgE values can influence, depending on the diet, the prediction of remission of urticaria in children. Materials and Methods: This prospective study was conducted in 132 patients diagnosed over two years with urticaria, admitted to “Sf. Maria” Clinical Pediatric Hospital Iaşi. Total IgE assay was performed by ELISA, and determination of specific serum IgE by the CLA System Quanti Scan method (Innogenetics, Heiden, Germany). Data were gathered and statistical analysis was performed using statistical software SPSS, using descriptive and inferential statistics. Results: The determination of specific IgE to food allergens was performed on a total of 132 cases. The values of specific IgE were positive for one or more food allergens in 84 patients (63.64%). The most common allergens involved were: cow’s milk in 33.3% cases, egg white in 22.6% cases, and hazelnuts in 11.9% cases. The specific IgE values for the different types of food included in our study had a predictive value for disease remission. Conclusions: The determination of specific IgE confirms the presence of a particular food allergen and may have predictive value for the future development of an allergic manifestation.


Sign in / Sign up

Export Citation Format

Share Document