scholarly journals StatsPro: Systematic integration and evaluation of statistical approaches for detecting differential expression in label-free quantitative proteomics

2022 ◽  
Vol 250 ◽  
pp. 104386
Author(s):  
Yin Yang ◽  
Jingqiu Cheng ◽  
Shisheng Wang ◽  
Hao Yang
Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1902-1902
Author(s):  
Dominik Dytfeld ◽  
Malathi Kandarpa ◽  
John R Strahler ◽  
Dattatreya Mellacheruvu ◽  
Suchitra Subramani ◽  
...  

Abstract Abstract 1902 Introduction: Multiple myeloma (MM) remains mostly incurable. Novel therapies have improved response rates, which are now reaching 100%. More importantly, number of recent studies showed that the depth of response, e.g. achievement of at least 90% reduction of the disease (≥VGPR) is associated with longer disease control. Therefore, improving VGPR rates and establishing predictors of VGPR to a given regimen may be an important clinical goal. High throughput quantitative proteomics may offer greater insight into the actual biology of the malignant cell than genome analysis and therefore, may be more useful in the development of personalized therapy. The objective of this study is to establish a proteomic signature predicting achievement of at least VGPR to initial treatment with bortezomib (Velcade®), pegylated liposomal doxorubicin, and dexamethasone (VDD). We previously reported preliminary proteomic profile of malignant plasma cells (PCs) obtained from a set of naïve MM pts enrolled in the VDD trial (Dytfeld et al., ASH 2009). Here we present the results of differential proteomic analysis of MM PCs of all available samples from the frontline VDD study (≥VGPR vs. <VGPR) using two independent and complementary quantitative proteomic platforms. We also compared the proteomic profile with gene expression data. Preliminary validation of the biomarkers of response prediction is presented. Methods: PCs were acquired from pre-treatment bone marrow specimens after obtaining informed consent from patients (pts), and were thereafter enriched with a RosetteSep® negative selection kit. Quantitative proteomic analysis of PCs from 17 naïve pts with MM from the VDD study was performed using iTRAQ approach in 8-plex variant. To increase confidence of analysis, label-free quantitative proteomics (LF) based on spectra counting was conducted on PCs from 12 pts. In iTRAQ experiments, proteins were processed with reagents according to the manufacturer's protocol followed by SCX fractionation and LC-MS/MS analysis (4800 Plus MALDI TOF/TOF). Peptides from the MM1S cell line were used as a reference. The data were analyzed using ProteinPilot™. For LF analysis, proteins were fractionated before trypsin digestion on Bis-Tris-Gel and subsequently run on LC-ESI-MS/MS on a linear trap mass spectrometer (LTQ Orbitrap). A database search was carried out using X!Tandem followed by Trans-proteomic Pipeline. At least 1.5-fold difference in expression in both platforms was used as a cut-off value. To correlate proteomics with gene expression of dysregulated proteins of interest, mRNA levels were analyzed by quantitative real time PCR (RT-PCR). Validation of proteomic findings on proteins of interest was performed using Western Blot. Results: We identified a total of 894 proteins in 3 iTRAQ experiments with high confidence (FDR<1%) and 1058 proteins by LF approach. Based on iTRAQ analysis, 20 proteins were found up-regulated in samples from pts with ≥VGPR (8 out of 17 pts) while 14 were down- regulated. Using LF approach, 284 proteins were elevated in the ≥VGPR group (6 out of 12 pts) while 315 proteins were down-regulated. Both iTRAQ and LF methods showed 15 differentially expressed proteins in common and 14 of them showed identical up or down trends. Interestingly, among differentially expressed proteins, there were proteins involved in proteasome activation (PSME1 and TXNL1), protection against oxidative stress (TXN and TXNDC5), glucose and cholesterol metabolism (TP1, APOA1 and ACAT1) and apoptosis (MX1). RT-PCR performed on a subset of genes confirmed the trend in differential expression between pts with ≥VGPR and <VGPR for TXNDC5 and PSME1. No change in mRNA expression levels was observed in TXN, APOA1, TPI1 and MX1while the trend in expression was reversed for ACAT1. Western blot analysis performed to date validated differential expression of PSME1. Conclusions: We present patient-derived proteomic characteristics of MM cells using two independent proteomic platforms. As a proof of concept, analysis of PCs obtained from pts enrolled in the frontline VDD study shows differential expression of 34 proteins in pts who achieved ≥VGPR vs. pts with <VGPR. Correlation with gene expression and further validation and functional analysis are in progress. This study was supported by a grant from the Multiple Myeloma Research Foundation. Disclosures: Jakubowiak: Millennium, Celgene, Bristol-Myers Squibb, Johnson & Johnson Ortho-Centocor: Honoraria; Millennium, Bristol-Myers Squibb: Membership on an entity's Board of Directors or advisory committees; Millennium, Celgene, Centocor-Ortho Biotech: Speakers Bureau.


2015 ◽  
Vol 129 ◽  
pp. 121-126 ◽  
Author(s):  
Hyungwon Choi ◽  
Sinae Kim ◽  
Damian Fermin ◽  
Chih-Chiang Tsou ◽  
Alexey I. Nesvizhskii

2011 ◽  
Vol 38 (6) ◽  
pp. 506-518 ◽  
Author(s):  
Wei ZHANG ◽  
Ji-Yang ZHANG ◽  
Hui LIU ◽  
Han-Chang SUN ◽  
Chang-Ming XU ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 750
Author(s):  
Pamali Fonseka ◽  
Taeyoung Kang ◽  
Sing Chee ◽  
Sai V. Chitti ◽  
Rahul Sanwlani ◽  
...  

Neuroblastoma (NBL) is a pediatric cancer that accounts for 15% of childhood cancer mortality. Amplification of the oncogene N-Myc occurs in 20% of NBL patients and is considered high risk as it correlates with aggressiveness, treatment resistance and poor prognosis. Even though the treatment strategies have improved in the recent years, the survival rate of high-risk NBL patients remain poor. Hence, it is crucial to explore new therapeutic avenues to sensitise NBL. Recently, bovine milk-derived extracellular vesicles (MEVs) have been proposed to contain anti-cancer properties. However, the impact of MEVs on NBL cells is not understood. In this study, we characterised MEVs using Western blotting, NTA and TEM. Importantly, treatment of NBL cells with MEVs decreased the proliferation and increased the sensitivity of NBL cells to doxorubicin. Temporal label-free quantitative proteomics of NBL cells highlighted the depletion of proteins involved in cell metabolism, cell growth and Wnt signalling upon treatment with MEVs. Furthermore, proteins implicated in cellular senescence and apoptosis were enriched in NBL cells treated with MEVs. For the first time, this study highlights the temporal proteomic profile that occurs in cancer cells upon MEVs treatment.


PROTEOMICS ◽  
2011 ◽  
Vol 11 (8) ◽  
pp. 1508-1516 ◽  
Author(s):  
Dana V. Skarra ◽  
Marilyn Goudreault ◽  
Hyungwon Choi ◽  
Michael Mullin ◽  
Alexey I. Nesvizhskii ◽  
...  

2016 ◽  
Vol 39 (5) ◽  
pp. 1761-1776 ◽  
Author(s):  
Lei Chen ◽  
Yang Lu ◽  
Jun Wen ◽  
Xu Wang ◽  
Lingling Wu ◽  
...  

Background/Aims: Individuals possessing a single kidney are at greater risk of renal injury upon exposure to harmful stimuli. This study aimed to explore the pathogenesis of renal injury in glomerulonephritis with versus without unilateral nephrectomy (UNX). Methods: Histological analysis and label-free quantitative proteomics were performed on two models—the Habu snake venom-induced glomerulonephritis model with versus without UNX (HabuU and Habu models, respectively). The role of villin 1, a differentially expressed protein (DEP) in mouse mesangial cells, was investigated. Results: Persistent mesangiolysis and focal hypercellularity together with reduced activation of cell proliferation in the HabuU model induced more serious renal injury compared with that in the Habu model. The DEPs between the two models were identified by label-free liquid chromatography-mass spectrometry. The KEGG pathway results indicated that regulation of actin cytoskeleton and focal adhesion were specifically enriched in the HabuU model. The cytoskeleton regulation protein villin 1 was downregulated in the HabuU model, but unchanged in the Habu model. Knockdown of villin 1 promoted apoptosis and inhibited the proliferation of mouse mesangial cells, suggesting villin 1 to be involved in qlomerular lesion self-repair insufficiency. Conclusion: By assessing the proteomic profiles of the two models, this study identified several important differences, particularly villin 1 expression, in regulatory mechanisms between the two models. Our findings provide novel insight into the mechanism of serious renal injury in glomerulonephritis with UNX.


Sign in / Sign up

Export Citation Format

Share Document