scholarly journals Low operating voltage resistive random access memory based on graphene oxide–polyvinyl alcohol nanocomposite thin films

2020 ◽  
Vol 5 (2) ◽  
pp. 199-206
Author(s):  
Huu Thoai Ngo ◽  
Minh Trang Thi Nguyen ◽  
Dinh Phuc Do ◽  
Kim My Tran ◽  
Kieu Hanh Thi Ta ◽  
...  
2010 ◽  
Vol 1250 ◽  
Author(s):  
Yusuke Nishi ◽  
Tatsuya Iwata ◽  
Tsunenobu Kimoto

AbstractAdmittance spectroscopy measurement has been performed on NiOx thin films with various oxygen compositions (x=1.0-1.2) in order to characterize localized defect levels. The activation energy and concentration of localized defect levels in NiOx films with low oxygen composition (x≤1.07) are 120-170 meV and lower than 2×1019 cm-3, respectively. From I-V measurement of the Pt/NiOx/Pt structures, samples with high oxygen composition (x≥1.10) did not show resistance switching operation, while samples with low oxygen composition (x≤1.07) did. The best oxygen composition of NiOx thin films turned out to be 1.07 in order to realize repeatable and stable resistance switching operation.


Electronics ◽  
2021 ◽  
Vol 10 (20) ◽  
pp. 2451
Author(s):  
Yabo Qin ◽  
Zongwei Wang ◽  
Yaotian Ling ◽  
Yimao Cai ◽  
Ru Huang

Resistive random-access memory (RRAM) with the ability to store and process information has been considered to be one of the most promising emerging devices to emulate synaptic behavior and accelerate the computation of intelligent algorithms. However, variation and limited resistance levels impede RRAM as a synapse for weight storage in neural network mapping. In this work, we investigate a TaOx-based RRAM with Al ion local doping. Compared with a device without doping, the device with locally doped Al ion exhibits excellent uniformity and analog characteristics. The operating voltage and resistance states show tighter distributions. Over 150 adjustable resistance states can be achieved through tuning compliance current (CC) and reset stop voltage. Moreover, incremental resistance switching is available under optimized identical pulses. The improved uniformity and analog characteristics can be attributed to the collective effects of reduced oxygen vacancy (Vo) formation energy and weak conductive filaments induced by the local Al ion dopants.


2013 ◽  
Vol 21 (1) ◽  
pp. 170-176 ◽  
Author(s):  
Hyun Woo Nho ◽  
Jong Yun Kim ◽  
Jian Wang ◽  
Hyun-Joon Shin ◽  
Sung-Yool Choi ◽  
...  

Here, anin situprobe for scanning transmission X-ray microscopy (STXM) has been developed and applied to the study of the bipolar resistive switching (BRS) mechanism in an Al/graphene oxide (GO)/Al resistive random access memory (RRAM) device. To performin situSTXM studies at the CK- and OK-edges, both the RRAM junctions and theI0junction were fabricated on a single Si3N4membrane to obtain local XANES spectra at these absorption edges with more delicateI0normalization. Using this probe combined with the synchrotron-based STXM technique, it was possible to observe unique chemical changes involved in the BRS process of the Al/GO/Al RRAM device. Reversible oxidation and reduction of GO induced by the externally applied bias voltages were observed at the OK-edge XANES feature located at 538.2 eV, which strongly supported the oxygen ion drift model that was recently proposed fromex situtransmission electron microscope studies.


Sign in / Sign up

Export Citation Format

Share Document