Resistance switching behavior of ZnO resistive random access memory with a reduced graphene oxide capping layer

2015 ◽  
Vol 54 (4S) ◽  
pp. 04DJ08 ◽  
Author(s):  
Cheng-Li Lin ◽  
Wei-Yi Chang ◽  
Yen-Lun Huang ◽  
Pi-Chun Juan ◽  
Tse-Wen Wang ◽  
...  
Nanoscale ◽  
2021 ◽  
Author(s):  
Tariq Aziz ◽  
Shi-Jing Wei ◽  
Yun Sun ◽  
Lai-Peng Ma ◽  
Songfeng Pei ◽  
...  

The conventional strategy of fabricating resistive random access memory (RRAM) based on graphene oxide is limited to a resistive layer with homogeneous oxidation, and the switching behavior relies on its...


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1401
Author(s):  
Te Jui Yen ◽  
Albert Chin ◽  
Vladimir Gritsenko

Large device variation is a fundamental challenge for resistive random access memory (RRAM) array circuit. Improved device-to-device distributions of set and reset voltages in a SiNx RRAM device is realized via arsenic ion (As+) implantation. Besides, the As+-implanted SiNx RRAM device exhibits much tighter cycle-to-cycle distribution than the nonimplanted device. The As+-implanted SiNx device further exhibits excellent performance, which shows high stability and a large 1.73 × 103 resistance window at 85 °C retention for 104 s, and a large 103 resistance window after 105 cycles of the pulsed endurance test. The current–voltage characteristics of high- and low-resistance states were both analyzed as space-charge-limited conduction mechanism. From the simulated defect distribution in the SiNx layer, a microscopic model was established, and the formation and rupture of defect-conductive paths were proposed for the resistance switching behavior. Therefore, the reason for such high device performance can be attributed to the sufficient defects created by As+ implantation that leads to low forming and operation power.


2014 ◽  
Vol 941-944 ◽  
pp. 1275-1278
Author(s):  
Hua Wang ◽  
Zhi Da Li ◽  
Ji Wen Xu ◽  
Yu Pei Zhang ◽  
Ling Yang ◽  
...  

ZnMn2O4films for resistance random access memory (RRAM) were fabricated on p-Si substrate by magnetron sputtering. The effects of thickness onI-Vcharacteristics, resistance switching behavior and endurance characteristics of ZnMn2O4films were investigated. The ZnMn2O4films with a structure of Ag/ZnMn2O4/p-Si exhibit bipolar resistive switching behavior. With the increase of thickness of ZnMn2O4films from 0.83μm to 2.3μm, both theVONand the number of stable repetition switching cycle increase, but theRHRS/RLRSratio decrease, which indicated that the ZnMn2O4films with a thickness of 0.83μm has the biggestRHRS/RLRSratio and the lowestVONandVOFF, but the worst endurance characteristics.


2019 ◽  
Vol 9 (7) ◽  
pp. 1432
Author(s):  
Chih-Yi Liu ◽  
Chun-Hung Lai ◽  
Chao-Cheng Lin ◽  
Chih-Peng Yang

A Cu/SiO2/Pt structure is usually used to study the resistive memory properties of an electrochemical resistive random access memory. It can be reversibly switched between low- and high-resistance states by using DC voltages in the atmosphere. However, its resistive switching behavior disappears in a vaporless environment because no conducting filaments can be formed within the Cu/SiO2/Pt structure. This study inserted a graphene oxide (GO) layer to fabricate a Cu/GO/SiO2/Pt structure that could be resistively switched in a vaporless environment. The X-ray photoelectron spectra depth profile of the Cu/GO/SiO2/Pt structure showed that oxygen-related groups of the GO film reacted with the Cu electrode. The GO film assisted Cu ionization in a vaporless environment, and Cu ions could migrate in an electrical field to the Pt electrode. Cu conducting filaments were formed and ruptured by different polarity voltages, and the resistance of the Cu/GO/SiO2/Pt structure could be reversibly switched in a vaporless environment. A schematic model was proposed to explain the switching mechanisms in the atmosphere and a vaporless environment.


2016 ◽  
Vol 109 (13) ◽  
pp. 131603 ◽  
Author(s):  
Jr-Jian Ke ◽  
Tzu-Chiao Wei ◽  
Dung-Sheng Tsai ◽  
Chun-Ho Lin ◽  
Jr-Hau He

Sign in / Sign up

Export Citation Format

Share Document