Heat tolerance and gene expression responses to heat stress in threespine sticklebacks from ecologically divergent environments

2018 ◽  
Vol 75 ◽  
pp. 88-96 ◽  
Author(s):  
Karin Brydsø Dammark ◽  
Anne-Laure Ferchaud ◽  
Michael M. Hansen ◽  
Jesper G. Sørensen
2021 ◽  
Vol 12 ◽  
Author(s):  
Mohammad Shah Jahan ◽  
Sheng Shu ◽  
Yu Wang ◽  
Md. Mahadi Hasan ◽  
Ahmed Abou El-Yazied ◽  
...  

Heat stress and abscisic acid (ABA) induce leaf senescence, whereas melatonin (MT) and gibberellins (GA) play critical roles in inhibiting leaf senescence. Recent research findings confirm that plant tolerance to diverse stresses is closely associated with foliage lifespan. However, the molecular mechanism underlying the signaling interaction of MT with GA and ABA regarding heat-induced leaf senescence largely remains undetermined. Herein, we investigated putative functions of melatonin in suppressing heat-induced leaf senescence in tomato and how ABA and GA coordinate with each other in the presence of MT. Tomato seedlings were pretreated with 100 μM MT or water and exposed to high temperature (38/28°C) for 5 days (d). Heat stress significantly accelerated senescence, damage to the photosystem and upregulation of reactive oxygen species (ROS), generating RBOH gene expression. Melatonin treatment markedly attenuated heat-induced leaf senescence, as reflected by reduced leaf yellowing, an increased Fv/Fm ratio, and reduced ROS production. The Rbohs gene, chlorophyll catabolic genes, and senescence-associated gene expression levels were significantly suppressed by MT addition. Exogenous application of MT elevated the endogenous MT and GA contents but reduced the ABA content in high-temperature-exposed plants. However, the GA and ABA contents were inhibited by paclobutrazol (PCB, a GA biosynthesis inhibitor) and sodium tungstate (ST, an ABA biosynthesis inhibitor) treatment. MT-induced heat tolerance was compromised in both inhibitor-treated plants. The transcript abundance of ABA biosynthesis and signaling genes was repressed; however, the biosynthesis genes MT and GA were upregulated in MT-treated plants. Moreover, GA signaling suppressor and catabolic gene expression was inhibited, while ABA catabolic gene expression was upregulated by MT application. Taken together, MT-mediated suppression of heat-induced leaf senescence has collaborated with the activation of MT and GA biosynthesis and inhibition of ABA biosynthesis pathways in tomato.


2013 ◽  
Vol 6 (2) ◽  
pp. 411-422 ◽  
Author(s):  
Yukari Higashi ◽  
Naohiko Ohama ◽  
Tomoko Ishikawa ◽  
Taku Katori ◽  
Ayaka Shimura ◽  
...  

Author(s):  
Yan Wang ◽  
Min Huang ◽  
Peng Gao ◽  
Hao Chen ◽  
Yu Zheng ◽  
...  

II YOU 838 (Oryza sativa subsp. indica), crossed by the maternal II-32A and paternal Fu Hui 838, was one of the most widely cultivated hybrid rice in China. Fu Hui 838, which has resistance to high temperature, was generated by mutation technology in 1990. Previous field-testing showed that II YOU 838 had tolerance to high temperature stress and this was confirmed in the present study. The mechanism of heat tolerance of II YOU 838 is not understood. The present study reports gene expression of a representative sample of heat-responsive proteins in II YOU 838 flag leaves subjected to heat stress during flowering. Differential expression of the heat shock protein 70 (HSP70), heat shock protein 90 (HSP90), small heat shock protein (smHSP), superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) were studied under heat stress and optimum temperatures in flag leaves of II YOU 838. All six genes studied were responsive to high temperatures. Quantitative real-time PCR showed increased expression of the heat shock protein genes and antioxidant enzyme genes in flag leaves under heat stress. With increasing number of days gene expression decreased under high temperature. Peak expression of SOD, POD, hsp70 and hsp90 was on Day 2 under 39 ℃. On Day 3, the expression of CAT under 39 ℃ was the highest. The expression of smhsp was highest on Day 3 under 27 ℃, followed by that on Day 2 under 27 ℃. The maximum expression values were observed on Day 2 or Day 3 after beginning of heat stress. This suggests that hsp90, hsp70, SOD and POD are principally involved in early responses to heat in rice flag leaves, and that smhsp may play a role in the recovery mechanism in rice after heat stress. This may provide insights into the mechanism of heat-tolerance in rice


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0247783
Author(s):  
Yan Zhang ◽  
Haoxuan Min ◽  
Chengchen Shi ◽  
Gengshou Xia ◽  
Zhibing Lai

Autophagy plays a critical role in plant heat tolerance in part by targeting heat-induced nonnative proteins for degradation. Autophagy also regulates metabolism, signaling and other processes and it is less understood how the broad function of autophagy affects plant heat stress responses. To address this issue, we performed transcriptome profiling of Arabidopsis wild-type and autophagy-deficient atg5 mutant in response to heat stress. A large number of differentially expressed genes (DEGs) were identified between wild-type and atg5 mutant even under normal conditions. These DEGs are involved not only in metabolism, hormone signaling, stress responses but also in regulation of nucleotide processing and DNA repair. Intriguingly, we found that heat treatment resulted in more robust changes in gene expression in wild-type than in the atg5 mutant plants. The dampening effect of autophagy deficiency on heat-regulated gene expression was associated with already altered expression of many heat-regulated DEGs prior to heat stress in the atg5 mutant. Altered expression of a large number of genes involved in metabolism and signaling in the autophagy mutant prior to heat stress may affect plant response to heat stress. Furthermore, autophagy played a positive role in the expression of defense- and stress-related genes during the early stage of heat stress responses but had little effect on heat-induced expression of heat shock genes. Taken together, these results indicate that the broad role of autophagy in metabolism, cellular homeostasis and other processes can also potentially affect plant heat stress responses and heat tolerance.


2022 ◽  
Vol 8 ◽  
Author(s):  
Michael T. Connelly ◽  
Crystal J. McRae ◽  
Pi-Jen Liu ◽  
Cecily E. Martin ◽  
Nikki Traylor-Knowles

Symbioses between eukaryotes and their associated microbial communities are fundamental processes that affect organisms’ ecology and evolution. A unique example of this is reef-building corals that maintain symbiotic associations with dinoflagellate algae (Symbiodiniaceae) and bacteria that affect coral health through various mechanisms. However, little is understood about how coral-associated bacteria communities affect holobiont heat tolerance. In this study, we investigated these interactions in four Pocillopora coral colonies belonging to three cryptic species by subjecting fragments to treatments with antibiotics intended to suppress the normal bacteria community, followed by acute heat stress. Separate treatments with only antibiotics or heat stress were conducted to compare the effects of individual stressors on holobiont transcriptome responses and microbiome shifts. Across all Pocillopora species examined, combined antibiotics and heat stress treatment significantly altered coral-associated bacteria communities and caused major changes in both coral and Cladocopium algal symbiont gene expression. Individually, heat stress impaired Pocillopora protein translation and activated DNA repair processes, while antibiotics treatments caused downregulation of Pocillopora amino acid and inorganic ion transport and metabolism genes and Cladocopium photosynthesis genes. Combined antibiotics-heat stress treatments caused synergistic effects on Pocillopora and Cladocopium gene expression including enhanced expression of oxidative stress response genes, programed cell death pathways and proteolytic enzymes that indicate an exacerbated response to heat stress following bacteria community suppression. Collectively, these results provide further evidence that corals and their Symbiodiniaceae and bacteria communities engage in highly coordinated metabolic interactions that are crucial for coral holobiont health, homeostasis, and heat tolerance.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Rui Shi ◽  
Luiz Fernando Brito ◽  
Aoxing Liu ◽  
Hanpeng Luo ◽  
Ziwei Chen ◽  
...  

Abstract Background The effect of heat stress on livestock production is a worldwide issue. Animal performance is influenced by exposure to harsh environmental conditions potentially causing genotype-by-environment interactions (G × E), especially in highproducing animals. In this context, the main objectives of this study were to (1) detect the time periods in which heifer fertility traits are more sensitive to the exposure to high environmental temperature and/or humidity, (2) investigate G × E due to heat stress in heifer fertility traits, and, (3) identify genomic regions associated with heifer fertility and heat tolerance in Holstein cattle. Results Phenotypic records for three heifer fertility traits (i.e., age at first calving, interval from first to last service, and conception rate at the first service) were collected, from 2005 to 2018, for 56,998 Holstein heifers raised in 15 herds in the Beijing area (China). By integrating environmental data, including hourly air temperature and relative humidity, the critical periods in which the heifers are more sensitive to heat stress were located in more than 30 days before the first service for age at first calving and interval from first to last service, or 10 days before and less than 60 days after the first service for conception rate. Using reaction norm models, significant G × E was detected for all three traits regarding both environmental gradients, proportion of days exceeding heat threshold, and minimum temperature-humidity index. Through single-step genome-wide association studies, PLAG1, AMHR2, SP1, KRT8, KRT18, MLH1, and EOMES were suggested as candidate genes for heifer fertility. The genes HCRTR1, AGRP, PC, and GUCY1B1 are strong candidates for association with heat tolerance. Conclusions The critical periods in which the reproductive performance of heifers is more sensitive to heat stress are trait-dependent. Thus, detailed analysis should be conducted to determine this particular period for other fertility traits. The considerable magnitude of G × E and sire re-ranking indicates the necessity to consider G × E in dairy cattle breeding schemes. This will enable selection of more heat-tolerant animals with high reproductive efficiency under harsh climatic conditions. Lastly, the candidate genes identified to be linked with response to heat stress provide a better understanding of the underlying biological mechanisms of heat tolerance in dairy cattle.


Author(s):  
Kazuho Isono ◽  
Ryo Tsukimoto ◽  
Satoshi Iuchi ◽  
Akihisa Shinozawa ◽  
Izumi Yotsui ◽  
...  

Abstract Plants are often exposed not only to short-term (S-) heat stress but also to diurnal long-term (L-) heat stress over several consecutive days. To reveal the mechanisms underlying L-heat stress tolerance, we here used a forward genetic screening for sensitive to long-term heat (sloh) mutants and isolated sloh4. The mutant was hypersensitive to L- but not S-heat stress. The causal gene of sloh4 was identical to MIP3 encoding a member of the MAIGO2 (MAG2) tethering complex, which is composed of the MAG2, MIP1, MIP2, and MIP3 subunits and is localized at the endoplasmic reticulum (ER) membrane. Although sloh4/mip3 was hypersensitive to L-heat stress, the sensitivity of the mag2-3 and mip1–1 mutants was similar to that of the wild type. Under L-heat stress, the ER stress and the following unfolded protein response (UPR) were more pronounced in sloh4 than in the wild type. Transcript levels of bZIP60-regulated UPR genes were strongly increased in sloh4 under L-heat stress. Two processes known to be mediated by INOSITOL REQUIRING ENZYME1 (IRE1)—accumulation of the spliced bZIP60 transcript and a decrease in the transcript levels of PR4 and PRX34, encoding secretory proteins—were observed in sloh4 in response to L-heat stress. These findings suggest that misfolded proteins generated in sloh4 under L-heat stress may be recognized by IRE1 but not bZIP28, resulting in initiation of the UPR via activated bZIP60. Therefore, it would be possible that only MIP3 in MAG2 complex has an additional function in L-heat tolerance, which is not related to the ER–Golgi vesicle tethering.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sherzod Nigmatullayevich Rajametov ◽  
Eun Young Yang ◽  
Myeong Cheoul Cho ◽  
Soo Young Chae ◽  
Hyo Bong Jeong ◽  
...  

AbstractUnderstanding the mechanism for heat tolerance is important for the hot pepper breeding program to develop heat-tolerant cultivars in changing climate. This study was conducted to investigate physiological and biochemical parameters related to heat tolerance and to determine leaf heat damage levels critical for selecting heat-tolerant genotypes. Seedlings of two commercial cultivars, heat-tolerant ‘NW Bigarim’ (NB) and susceptible ‘Chyung Yang’ (CY), were grown in 42 °C for ten days. Photosynthesis, electrolyte conductivity, proline content were measured among seedlings during heat treatment. Photosynthetic rate was significantly reduced in ‘CY’ but not in ‘NB’ seedlings in 42 °C. Stomatal conductivity and transpiration rate was significantly higher in ‘NB’ than ‘CY’. Proline content was also significantly higher in ‘NB’. After heat treatment, leaf heat damages were determined as 0, 25, 50 and 75% and plants with different leaf heat damages were moved to a glasshouse (30–32/22–24 °C in day/night). The growth and developmental parameters were investigated until 70 days. ‘NB’ was significantly affected by leaf heat damages only in fruit yield while ‘CY’ was in fruit set, number and yield. ‘NB’ showed fast recovery after heat stress compared to ‘CY’. These results suggest that constant photosynthetic rate via increased transpiration rate as well as high proline content in heat stress condition confer faster recovery from heat damage of heat-tolerant cultivars in seedlings stages.


Sign in / Sign up

Export Citation Format

Share Document