Curcumin in cancer therapy: A novel adjunct for combination chemotherapy with paclitaxel and alleviation of its adverse effects

Life Sciences ◽  
2020 ◽  
Vol 256 ◽  
pp. 117984 ◽  
Author(s):  
Milad Ashrafizadeh ◽  
Ali Zarrabi ◽  
Farid Hashemi ◽  
Ebrahim Rahmani Moghadam ◽  
Fardin Hashemi ◽  
...  
2020 ◽  
Vol 20 (4) ◽  
pp. 271-287 ◽  
Author(s):  
Kuldeep Rajpoot

Though modern available cancer therapies are effective, they possess major adverse effects, causing non-compliance to patients. Furthermore, the majority of the polymeric-based medication platforms are certainly not universally acceptable, due to their several restrictions. With this juxtaposition, lipid-based medication delivery systems have appeared as promising drug nanocarriers to replace the majority of the polymer-based products because they are in a position to reverse polymer as well as, drug-associated restrictions. Furthermore, the amalgamation of the basic principle of nanotechnology in designing lipid nanocarriers, which are the latest form of lipid carriers, has tremendous chemotherapeutic possibilities as tumor-targeted drug-delivery pertaining to tumor therapy. Apart from this, it is reported that nearly 40% of the modern medication entities are lipophilic. Moreover, research continues to be efficient in attaining a significant understanding of the absorption and bioavailability of the developed lipids systems.


Diagnostics ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 838
Author(s):  
Katharina A. Sterenczak ◽  
Nadine Stache ◽  
Sebastian Bohn ◽  
Stephan Allgeier ◽  
Bernd Köhler ◽  
...  

During breast cancer therapy, paclitaxel and trastuzumab are both associated with adverse effects such as chemotherapy-induced peripheral neuropathy and other systemic side effects including ocular complications. Corneal nerves are considered part of the peripheral nervous system and can be imaged non-invasively by confocal laser scanning microscopy (CLSM) on the cellular level. Thus, in vivo CLSM imaging of structures of the corneal subbasal nerve plexus (SNP) such as sensory nerves or dendritic cells (DCs) can be a powerful tool for the assessment of corneal complications during cancer treatment. During the present study, the SNP of a breast cancer patient was analyzed over time by using large-scale in vivo CLSM in the course of paclitaxel and trastuzumab therapy. The same corneal regions could be re-identified over time. While the subbasal nerve morphology did not alter significantly, a change in dendritic cell density and an additional local burst within the first 11 weeks of therapy was detected, indicating treatment-mediated corneal inflammatory processes. Ocular structures such as nerves and dendritic cells could represent useful biomarkers for the assessment of ocular adverse effects during cancer therapy and their management, leading to a better visual prognosis.


2021 ◽  
Vol 22 (11) ◽  
pp. 5804
Author(s):  
Kamila Buzun ◽  
Agnieszka Gornowicz ◽  
Roman Lesyk ◽  
Krzysztof Bielawski ◽  
Anna Bielawska

Autophagy is a process of self-degradation that plays an important role in removing damaged proteins, organelles or cellular fragments from the cell. Under stressful conditions such as hypoxia, nutrient deficiency or chemotherapy, this process can also become the strategy for cell survival. Autophagy can be nonselective or selective in removing specific organelles, ribosomes, and protein aggregates, although the complete mechanisms that regulate aspects of selective autophagy are not fully understood. This review summarizes the most recent research into understanding the different types and mechanisms of autophagy. The relationship between apoptosis and autophagy on the level of molecular regulation of the expression of selected proteins such as p53, Bcl-2/Beclin 1, p62, Atg proteins, and caspases was discussed. Intensive studies have revealed a whole range of novel compounds with an anticancer activity that inhibit or activate regulatory pathways involved in autophagy. We focused on the presentation of compounds strongly affecting the autophagy process, with particular emphasis on those that are undergoing clinical and preclinical cancer research. Moreover, the target points, adverse effects and therapeutic schemes of autophagy inhibitors and activators are presented.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1201
Author(s):  
Garri Manasaryan ◽  
Dmitry Suplatov ◽  
Sergey Pushkarev ◽  
Viktor Drobot ◽  
Alexander Kuimov ◽  
...  

The PARP family consists of 17 members with diverse functions, including those related to cancer cells’ viability. Several PARP inhibitors are of great interest as innovative anticancer drugs, but they have low selectivity towards distinct PARP family members and exert serious adverse effects. We describe a family-wide study of the nicotinamide (NA) binding site, an important functional region in the PARP structure, using comparative bioinformatic analysis and molecular modeling. Mutations in the NA site and D-loop mobility around the NA site were identified as factors that can guide the design of selective PARP inhibitors. Our findings are of particular importance for the development of novel tankyrase (PARPs 5a and 5b) inhibitors for cancer therapy.


1978 ◽  
Vol 12 (4) ◽  
pp. 226-229 ◽  
Author(s):  
Janice M. Williams ◽  
Nicholas G. Popovich

Testicular carcinoma is a leading cause of cancer-related deaths in adult males between the ages of 20 and 35. Cis-Diamminedichloroplatinum (II) (i.e., CDDP) is currently being used investigatively in combination chemotherapy for the treatment of this disease. This article reviews the literature to date on CDDP and its application in testicular cancer. Individual CDDP parameters (e.g., chemistry, mechanism of action, effectiveness and clinical use, adverse effects, dosage, administration and distribution) are discussed.


1985 ◽  
Vol 6 (9) ◽  
pp. 259-268 ◽  
Author(s):  
A. F. Mulne ◽  
J. C. Koepke

Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 349
Author(s):  
Sepideh Mirzaei ◽  
Ali Zarrabi ◽  
Farid Hashemi ◽  
Amirhossein Zabolian ◽  
Hossein Saleki ◽  
...  

Doxorubicin (DOX) is extensively applied in cancer therapy due to its efficacy in suppressing cancer progression and inducing apoptosis. After its discovery, this chemotherapeutic agent has been frequently used for cancer therapy, leading to chemoresistance. Due to dose-dependent toxicity, high concentrations of DOX cannot be administered to cancer patients. Therefore, experiments have been directed towards revealing underlying mechanisms responsible for DOX resistance and ameliorating its adverse effects. Nuclear factor erythroid 2-related factor 2 (Nrf2) signaling is activated to increase levels of reactive oxygen species (ROS) in cells to protect them against oxidative stress. It has been reported that Nrf2 activation is associated with drug resistance. In cells exposed to DOX, stimulation of Nrf2 signaling protects cells against cell death. Various upstream mediators regulate Nrf2 in DOX resistance. Strategies, both pharmacological and genetic interventions, have been applied for reversing DOX resistance. However, Nrf2 induction is of importance for alleviating side effects of DOX. Pharmacological agents with naturally occurring compounds as the most common have been used for inducing Nrf2 signaling in DOX amelioration. Furthermore, signaling networks in which Nrf2 is a key player for protection against DOX adverse effects have been revealed and are discussed in the current review.


2019 ◽  
Vol 70 (3) ◽  
pp. 160-172
Author(s):  
Bensu Karahalil ◽  
Sevgi Yardım-Akaydin ◽  
Sultan Nacak Baytas

AbstractThe entire world is looking for effective cancer therapies whose benefits would outweigh their toxicity. One way to reduce resistance to chemotherapy and its adverse effects is the so called targeted therapy, which targets specific molecules (“molecular targets”) that play a critical role in cancer growth, progression, and metastasis. One such specific target are microtubules. In this review we address the current knowledge about microtubule-targeting agents or drugs (MTAs/MTDs) used in cancer therapy from their synthesis to toxicities. Synthetic and natural MTAs exhibit antitumor activity, and preclinical and clinical studies have shown that their anticancer effectiveness is higher than that of traditional drug therapies. Furthermore, MTAs involve a lower risk of adverse effects such as neurotoxicity and haemotoxicity. Several new generation MTAs are currently being evaluated for clinical use. This review brings updated information on the benefits of MTAs, therapeutic approaches, advantages, and challenges in their research.


1985 ◽  
Vol 6 (9) ◽  
pp. 259-268
Author(s):  
Arlynn F. Mulne ◽  
John C. Koepke

There are many opportunities for the primary care pediatrician to participate actively in the care of children with cancer. Adverse effects of therapy must be considered in the differential diagnosis of many problems encountered by these patients, and appropriate management instituted. Adverse effects may appear during therapy or may become apparent only many years later. Referral to a hematologist/oncologist should be considered when help is needed in the diagnosis and management of possible therapy-related problems.


2014 ◽  
Vol 54 (1) ◽  
pp. 136-137
Author(s):  
Soo Khai Ng ◽  
John P. M. Wood ◽  
Glyn Chidlow ◽  
Daniel J. Peet ◽  
Robert J. Casson

Sign in / Sign up

Export Citation Format

Share Document