scholarly journals Seasonal and spatial controls on N2O concentrations and emissions in low-nitrogen estuaries: Evidence from three tropical systems

2020 ◽  
Vol 221 ◽  
pp. 103779 ◽  
Author(s):  
Rachel Murray ◽  
Dirk V. Erler ◽  
Judith Rosentreter ◽  
Naomi S. Wells ◽  
Bradley D. Eyre
1986 ◽  
Vol 4 (1) ◽  
pp. 22-25 ◽  
Author(s):  
A.J. Laiche ◽  
V.E. Nash

Three woody landscape species, Rhododendron indica ‘President Clay’, Ligustrum sinense ‘variegata’, and Ilex crenata ‘compacta’, were grown in media prepared from fresh pine bark, pine bark with wood, and pine tree chips. Although media were variable in physical properties, all exhibited very high hydraulic conductivity and low water holding capacity. The capacity of these media materials to hold fertilizer elements was very low. Nitrogen, potassium, and phosphorus were rapidly removed by leaching while calciuum and magnesium were retained longer because of the low solubility of dolomitic limestone. Pine bark was the best growth media tested for all plant species. Pine bark with wood was less satisfactory than pine bark and growth was poorest in pine tree chips. More research is needed on the use of the organic amendments with greater amounts of wood before being widely used as organic components of growth media.


Alloy Digest ◽  
2013 ◽  
Vol 62 (7) ◽  

Abstract ATI 441 is a low-carbon and low-nitrogen ferritic stainless steel with 18 Cr and columbium. The alloy is typically used for exhaust system components. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as forming. Filing Code: SS-1150. Producer or source: Allegheny Technologies Inc..


Alloy Digest ◽  
1979 ◽  
Vol 28 (1) ◽  

Abstract ALLEGHENY LUDLUM E-BRITE 26-1 ALLOY is a low-carbon, low-nitrogen ferritic stainless steel made by a vacuum refining process. It provides: (1) Excellent resistance to pitting and crevice corrosion in chloride-containing environments, (2) Excellent resistance to chloride stress-corrosion cracking, (3) Resistance to intergranular corrosion, (4) Resistance to a wide variety of corrosive environments, and (5) Improved toughness and ductility after welding. Its applications include equipment for handling caustic, organic acids, nitric acid, bleach solutions, urea and chloride containing cooling waters. This datasheet provides information on composition, physical properties, microstructure, hardness, and tensile properties as well as fracture toughness. It also includes information on low temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-360. Producer or source: Allegheny Ludlum Corporation.


2016 ◽  
Vol 42 (10) ◽  
pp. 1487 ◽  
Author(s):  
Min GE ◽  
Yuan-Da LYU ◽  
Ti-Fu ZHANG ◽  
Ling ZHOU ◽  
Feng LIN ◽  
...  

2016 ◽  
Vol 227 (3) ◽  
Author(s):  
Frederico Guilherme de Souza Beghelli ◽  
Daniele Frascareli ◽  
Marcelo Luiz Martins Pompêo ◽  
Viviane Moschini-Carlos

2021 ◽  
Vol 9 (4) ◽  
pp. 870
Author(s):  
Muhammad Aammar Tufail ◽  
María Touceda-González ◽  
Ilaria Pertot ◽  
Ralf-Udo Ehlers

Plant growth promoting endophytic bacteria, which can fix nitrogen, plays a vital role in plant growth promotion. Previous authors have evaluated the effect of Gluconacetobacter diazotrophicus Pal5 inoculation on plants subjected to different sources of abiotic stress on an individual basis. The present study aimed to appraise the effect of G. diazotrophicus inoculation on the amelioration of the individual and combined effects of drought and nitrogen stress in maize plants (Zea mays L.). A pot experiment was conducted whereby treatments consisted of maize plants cultivated under drought stress, in soil with a low nitrogen concentration and these two stress sources combined, with and without G. diazotrophicus seed inoculation. The inoculated plants showed increased plant biomass, chlorophyll content, plant nitrogen uptake, and water use efficiency. A general increase in copy numbers of G. diazotrophicus, based on 16S rRNA gene quantification, was detected under combined moderate stress, in addition to an increase in the abundance of genes involved in N fixation (nifH). Endophytic colonization of bacteria was negatively affected by severe stress treatments. Overall, G. diazotrophicus Pal5 can be considered as an effective tool to increase maize crop production under drought conditions with low application of nitrogen fertilizer.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 745
Author(s):  
Youngho Kwon ◽  
Nkulu Rolly Kabange ◽  
Ji-Yun Lee ◽  
So-Myeong Lee ◽  
Jin-Kyung Cha ◽  
...  

Shoot branching is considered as an important trait for the architecture of plants and contributes to their growth and productivity. In cereal crops, such as rice, shoot branching is controlled by many factors, including phytohormones signaling networks, operating either in synergy or antagonizing each other. In rice, shoot branching indicates the ability to produce more tillers that are essential for achieving high productivity and yield potential. In the present study, we evaluated the growth and development, and yield components of a doubled haploid population derived from a cross between 93-11 (P1, indica) and Milyang352 (P2, japonica), grown under normal nitrogen and low nitrogen cultivation open field conditions. The results of the phenotypic evaluation indicated that parental lines 93-11 (P1, a high tillering indica cultivar) and Milyang352 (P2, a low tillering japonica cultivar) showed distinctive phenotypic responses, also reflected in their derived population. In addition, the linkage mapping and quantitative trait locus (QTL) analysis detected three QTLs associated with tiller number on chromosome 2 (qTNN2-1, 130 cM, logarithm of the odds (LOD) 4.14, PVE 14.5%; and qTNL2-1, 134 cM, LOD: 6.05, PVE: 20.5%) and chromosome 4 (qTN4-1, 134 cM, LOD 3.92, PVE 14.5%), with qTNL2-1 having the highest phenotypic variation explained, and the only QTL associated with tiller number under low nitrogen cultivation conditions, using Kompetitive Allele-Specific PCR (KASP) and Fluidigm markers. The additive effect (1.81) of qTNL2-1 indicates that the allele from 93-11 (P1) contributed to the observed phenotypic variation for tiller number under low nitrogen cultivation. The breakthrough is that the majority of the candidate genes harbored by the QTLs qTNL2-1 and qTNN4-1 (here associated with the control of shoot branching under low and normal nitrogen cultivation, respectively), were also proposed to be involved in plant stress signaling or response mechanisms, with regard to their annotations and previous reports. Therefore, put together, these results would suggest that a possible crosstalk exists between the control of plant growth and development and the stress response in rice.


Sign in / Sign up

Export Citation Format

Share Document