In situ EBSD study of deformation behavior of primary α phase in a bimodal Ti-6Al-4V alloy during uniaxial tensile tests

2020 ◽  
Vol 163 ◽  
pp. 110282
Author(s):  
Wansong Li ◽  
Shigeto Yamasaki ◽  
Masatoshi Mitsuhara ◽  
Hideharu Nakashima
2018 ◽  
Vol 37 (9-10) ◽  
pp. 873-888 ◽  
Author(s):  
Nitin Kotkunde ◽  
Hansoge Nitin Krishnamurthy ◽  
Swadesh Kumar Singh ◽  
Gangadhar Jella

AbstractA thorough understanding of hot deformation behavior plays a vital role in determining process parameters of hot working processes. Firstly, uniaxial tensile tests have been performed in the temperature ranges of 150 °C–600 °C and strain rate ranges of 0.0001–0.01s−1 for analyzing the deformation behavior of ASS 304 and ASS 316. The phenomenological-based constitutive models namely modified Fields–Backofen (m-FB) and Khan–Huang–Liang (KHL) have been developed. The prediction capability of these models has been verified with experimental data using various statistical measures. Analysis of statistical measures revealed KHL model has good agreement with experimental flow stress data. Through the flow stresses behavior, the processing maps are established and analyzed according to the dynamic materials model (DMM). In the processing map, the variation of the efficiency of the power dissipation is plotted as a function of temperature and strain rate. The processing maps results have been validated with experimental data.


2019 ◽  
Vol 759 ◽  
pp. 624-632 ◽  
Author(s):  
Shengci Li ◽  
Chengyu Guo ◽  
Leilei Hao ◽  
Yonglin Kang ◽  
Yuguo An

2015 ◽  
Vol 651-653 ◽  
pp. 969-974 ◽  
Author(s):  
Dilip Banerjee ◽  
Mark Iadicola ◽  
Adam Creuziger ◽  
Tim Foecke

Lightweighting materials (e.g., advanced high strength steels, aluminum alloys etc.) are increasingly being used by automotive companies as sheet metal components. However, accurate material models are needed for wider adoption. These constitutive material data are often developed by applying biaxial strain paths with cross-shaped (cruciform) specimens. Optimizing the design of specimens is a major goal in which finite element (FE) analysis can play a major role. However, verification of FE models is necessary. Calibrating models against uniaxial tensile tests is a logical first step. In the present study, reliable stress-strain data up to failure are developed by using digital image correlation (DIC) technique for strain measurement and X-ray techniques and/or force data for stress measurement. Such data are used to model the deformation behavior in uniaxial and biaxial tensile specimens. Model predictions of strains and displacements are compared with experimental data. The role of imperfections on necking behavior in FE modeling results of uniaxial tests is discussed. Computed results of deformation, strain profile, and von Mises plastic strain agree with measured values along critical paths in the cruciform specimens. Such a calibrated FE model can be used to obtain an optimum cruciform specimen design.


2013 ◽  
Vol 10 (1) ◽  
pp. 80 ◽  
Author(s):  
R Khan

 The objective of this work was to investigate the effects of material anisotropy on the yielding and hardening behavior of 2024T351 aluminum alloy using isotropic and anisotropic yield criteria. Anisotropy may be induced in a material during the manufacturing through processes like rolling or forging. This induced anisotropy gives rise to the concept of orientation-dependent material properties such as yield strength, ductility, strain hardening, fracture strength, or fatigue resistance. Inclusion of the effects of anisotropy is essential in correctly predicting the deformation behavior of a material. In this study, uniaxial tensile tests were first performed in all three rolling directions, L , T  and S , for smooth bar specimens made from hot rolled plate of Al2024 alloy. The experimental results showed that the L - and T -directions yielded higher yield strengths and a greater percentage of elongation before fracture than the S -direction. Subsequently, finite element analysis of tensile specimens was performed using isotropic (von Mises) and anisotropic (Hill) yield criteria to predict the onset of yielding and hardening behaviors during the course of deformation. Hill's criterion perfectly fitted with the test data in the S -direction, but slightly underestimated the yield strength in L -direction. The results indicated that the Hill yield criterion is the most suitable one to predict the onset of yielding and hardening behaviors for 2024T351 aluminum alloy in all directions. 


Author(s):  
L.E. Murr

Although it now seems to be generally recognized that grain boundaries and other interfaces are sources for dislocations, there are only scant few observations which tend to show convincing evidence for this. Murr earlier suggested that dislocation pile-ups in deformed metals and alloys (especially of low stacking-fault free energy) were primarily dislocation emission profiles, and more recent quantitative studies tend to unambiguously confirm this for uniaxial tensile deformation. Some of these features are illustrated in Fig. 1(a) and (b) which show a systematic increase in the number of dislocation profiles associated with grain boundary ledges at increasing tensile strains; observed in a Hitachi H.U. 200 F transmission electron microscope.The results shown in Fig. 1(a) and (b) were obtained as part of a systematic study of dislocation emission following the straining of 304 stainless steel sheet samples in separate, conventional tensile tests. Consequently these observations, while qualitatively and even quantitatively convincing, lack the force of direct, in-situ observations.


Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2495 ◽  
Author(s):  
Y.C. Lin ◽  
Wen-Yong Dong ◽  
Xu-Hao Zhu ◽  
Qiao Wu ◽  
Ying-Jie He

Deformation behavior and precipitation features of an Al–Cu alloy are investigated using uniaxial tensile tests at intermediate temperatures. It is found that the true stress drops with the decreased strain rate or the increased deformation temperature. The number of substructures and the degree of grain elongation decrease with the raised temperature or the decreased strain rate. At high temperatures or low strain rates, some dynamic recrystallized grains can be found. The type of precipitates is influenced by the heating process before hot tensile deformation. The content and size of precipitates increase during tensile deformation at intermediate temperatures. As the temperature increases over 200 °C, the precipitation process (Guinier Preston zone (G.P. zones)→θ′′ phase→θ′ phase) is enhanced, resulting in increased contents of θ′′ and θ′ phases. However, θ′′ and θ′ phases prefer to precipitate along the {020}Al direction, resulting in an uneven distribution of phases. Considering the flow softening degree and the excessive heterogeneous precipitation of θ′′ and θ′ phases during hot deformation, the reasonable strain rate and temperature are about 0.0003 s−1 and 150 °C, respectively.


Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3092
Author(s):  
Mouaad Yassine Aliouat ◽  
Dmitriy Ksenzov ◽  
Stephanie Escoubas ◽  
Jörg Ackermann ◽  
Dominique Thiaudière ◽  
...  

We describe the impact of tensile strains on the structural properties of thin films composed of PffBT4T-2OD π-conjugated polymer and PC71BM fullerenes coated on a stretchable substrate, based on a novel approach using in situ studies of flexible organic thin films. In situ grazing incidence X-ray diffraction (GIXD) measurements were carried out to probe the ordering of polymers and to measure the strain of the polymer chains under uniaxial tensile tests. A maximum 10% tensile stretching was applied (i.e., beyond the relaxation threshold). Interestingly we found different behaviors upon stretching the polymer: fullerene blends with the modified polymer; fullerene blends with the 1,8-Diiodooctane (DIO) additive. Overall, the strain in the system was almost twice as low in the presence of additive. The inclusion of additive was found to help in stabilizing the system and, in particular, the π–π packing of the donor polymer chains.


Sign in / Sign up

Export Citation Format

Share Document