Effects of epoxy resin on the mechanical performance and thickening properties of geopolymer cured at low temperature

2016 ◽  
Vol 109 ◽  
pp. 133-145 ◽  
Author(s):  
Jiapei Du ◽  
Yuhuan Bu ◽  
Zhonghou Shen ◽  
Xianhai Hou ◽  
Chengxing Huang
2021 ◽  
Vol 5 (7) ◽  
pp. 191
Author(s):  
Yanshuai Wang ◽  
Siyao Guo ◽  
Biqin Dong ◽  
Feng Xing

The functionalization of graphene has been reported widely, showing special physical and chemical properties. However, due to the lack of surface functional groups, the poor dispersibility of graphene in solvents strongly limits its engineering applications. This paper develops a novel green “in-situ titania intercalation” method to prepare a highly dispersed graphene, which is enabled by the generation of the titania precursor between the layer of graphene at room temperature to yield titania-graphene nanocomposites (TiO2-RGO). The precursor of titania will produce amounts of nano titania between the graphene interlayers, which can effectively resist the interfacial van der Waals force of the interlamination in graphene for improved dispersion state. Such highly dispersed TiO2-RGO nanocomposites were used to modify epoxy resin. Surprisingly, significant enhancement of the mechanical performance of epoxy resin was observed when incorporating the titania-graphene nanocomposites, especially the improvements in tensile strength and elongation at break, with 75.54% and 176.61% increases at optimal usage compared to the pure epoxy, respectively. The approach presented herein is easy and economical for industry production, which can be potentially applied to the research of high mechanical property graphene/epoxy composite system.


2018 ◽  
Vol 33 ◽  
pp. 02075 ◽  
Author(s):  
Tatyana Matseevich

The theme of the research is important because it allows to use hybrid materials as finishing in the high-rise constructions. The aim of the study was the development of producing coloured hybrid materials based on liquid glass, a polyisocyanate, epoxy resin and 2.4-toluylenediisocyanate. The detailed study of the process of stress relaxation at different temperatures in the range of 20-100°C was provided. The study found that the obtained materials are subject to the simplified technology. The materials easy to turn different colors, and dyes (e.g. Sudan blue G) are the catalysts for the curing process of the polymeric precursors. The materials have improved mechanical relaxation properties, possess different color and presentable, can be easily combined with inorganic base (concrete, metal). The limit of compressive strength varies from 32 to 17.5 MPa at a temperature of 20 to 100°C. The values σ∞ are from 20.4 to 7.7 MPa within the temperature range from 20 to 100°C. The physical parameters of materials were evaluated basing on the data of stress relaxation: the initial stress σ0, which occurs at the end of the deformation to a predetermined value; quasi-equilibrium stress σ∞, which persists for a long time relaxation process. Obtained master curves provide prediction relaxation behavior for large durations of relaxation. The study obtained new results. So, the addition of epoxy resin in the composition of the precursor improves the properties of hybrid materials. By the method of IR spectroscopy identified chemical transformations in the course of obtaining the hybrid material. Evaluated mechanical performance of these materials is long-time. Applied modern physically-based memory functions, which perfectly describe the stress relaxation process.


1987 ◽  
Vol 68 (3-4) ◽  
pp. 285-299 ◽  
Author(s):  
M. Koláč ◽  
B. S. Neganov ◽  
A. Sahling ◽  
S. Sahling

With the research and development of high temperature superconducting technology, superconducting insulating materials under liquid helium and nitrogen temperature have been gradually taken seriously. Considering the unique operating environment, epoxy resin and PI face the challenge of low temperature. Electrical tree is one of the aging failure phenomena occurring in solid dielectrics. These imperfections could cause the field concentration with the application of high voltage, which results in partial discharges (PD). PD testing is an important quality check for the insulation of HTS cable. This chapter presents a study aimed at clarifying the influence of low temperature, pulse frequency and pulse duration on the electrical tree characteristics in epoxy resin, as well as PD characterization of PI film in LN2. The results show that the number of discharges and the discharge quantity in PI films increase with the increasing of the applied voltage and the defect size. The PD inception voltage decreases when the void defect diameter in PI enlarged and it is higher in LN2 than that at room temperature.


2004 ◽  
Vol 31 (5) ◽  
pp. 17-21 ◽  
Author(s):  
I. A. Chernov ◽  
T. R. Deberdeev ◽  
G. F. Novikov ◽  
R. M. Garipov ◽  
V. I. Irzhak
Keyword(s):  

2020 ◽  
pp. 073490412093408
Author(s):  
Wei Yan ◽  
Pu Xie ◽  
Zhengwei Yang ◽  
Guangjin Luo ◽  
Weijiang Huang ◽  
...  

Aluminum phosphates coated sepiolite nanocomposite was fabricated via a simple one-pot heterogeneous precipitation strategy, and the effects of aluminum phosphates on the morphology of aluminum phosphates coated sepiolite were investigated. Moreover, the effect of aluminum phosphates coated sepiolite on the flame-retardant behavior, mechanical properties, and thermal stability of epoxy resin have been discussed. The results indicated that the introduction of only 20 wt% aluminum phosphates coated sepiolite in epoxy resin increased the limited oxygen index from 21.8% to 30.1%, thus the material met the UL-94 V-0 rating. Thermogravimetric analyses revealed that char yield increased in the presence of aluminum phosphates coated sepiolite form thermally stable carbonaceous char. Aluminum phosphates–coated sepiolite could improve the mechanical performance, thermal stability of epoxy resin.


1984 ◽  
Vol 247 (4) ◽  
pp. R722-R727 ◽  
Author(s):  
D. R. Caprette ◽  
J. B. Senturia

The effects of low temperature on mechanical performance of the isolated left ventricles of the 13-lined ground squirrel (a hibernator) and the rat (a nonhibernator) were studied. In addition, low-temperature performance of hearts from summer-active, winter-hibernating, and winter-active ground squirrels were compared. By measuring pressure (P) generated against a balloon inserted into the left ventricle, maximum developed pressure (DP) and maximum rate of increase of P (peak dP/dt) were determined over a temperature range of 5–20 degrees C. The DP and dP/dt of the rat ventricle exhibited significantly greater reduction in magnitude at reduced temperature, compared with those of ground squirrel ventricle. Rat, but not ground squirrel, hearts exhibited arrhythmias of various kinds, including extra-systoles, tachycardia, pulsus alternans, and periods of asystole. Hearts from winter-active ground squirrels developed greater pressures than those from winter-hibernating and summer-active animals. This evidence suggests that disruption of cell communication in the nonhibernator ventricular myocardium plays an important role in the failure of the nonhibernator heart at low body temperatures. Contractility of the seasonal hibernator's heart is influenced by both season and hibernation itself, possibly through shifts in myocardial metabolism. However, seasonal adaptations appear not to be required to confer the special resistance of the seasonal hibernator's heart to the deleterious effects of low temperature.


Sign in / Sign up

Export Citation Format

Share Document