Electrospinning of nanofibrous scaffolds with continuous structure and material gradients

2014 ◽  
Vol 137 ◽  
pp. 393-397 ◽  
Author(s):  
Jiankang He ◽  
Ting Qin ◽  
Yaxiong Liu ◽  
Xiang Li ◽  
Dichen Li ◽  
...  
2015 ◽  
Vol 11 (2) ◽  
pp. 222-228 ◽  
Author(s):  
Charu Dwivedi ◽  
Himanshu Pandey ◽  
Avinash Pandey ◽  
Pramod Ramteke

1968 ◽  
Vol 5 (6) ◽  
pp. 1401-1407 ◽  
Author(s):  
Ronald Doig ◽  
Jackson M. Barton Jr.

Potassium-argon ages have been determined for alkaline rocks, including carbonatites, from some fifteen localities in Quebec. Nine centers of intrusion, including two previously documented localities, yield ages in the range 400 to 600 million years. All but two of these are located on or very near the northern boundary fault of the St. Lawrence graben system. Included in this group are four carbonatites with remarkably similar ages of intrusion (565 m.y.). The existence of this widespread coeval igneous activity along a 1200-mile segment of the lowland area and its westward extension supports the hypothesis that the St. Lawrence graben is a continuous structure, and indicates that the system has been active for at least 600 million years.


2021 ◽  
Vol 22 (4) ◽  
pp. 1776
Author(s):  
Elham Pishavar ◽  
Hongrong Luo ◽  
Johanna Bolander ◽  
Antony Atala ◽  
Seeram Ramakrishna

Progenitor cells derived from the retinal pigment epithelium (RPECs) have shown promise as therapeutic approaches to degenerative retinal disorders including diabetic retinopathy, age-related macular degeneration and Stargardt disease. However, the degeneration of Bruch’s membrane (BM), the natural substrate for the RPE, has been identified as one of the major limitations for utilizing RPECs. This degeneration leads to decreased support, survival and integration of the transplanted RPECs. It has been proposed that the generation of organized structures of nanofibers, in an attempt to mimic the natural retinal extracellular matrix (ECM) and its unique characteristics, could be utilized to overcome these limitations. Furthermore, nanoparticles could be incorporated to provide a platform for improved drug delivery and sustained release of molecules over several months to years. In addition, the incorporation of tissue-specific genes and stem cells into the nanostructures increased the stability and enhanced transfection efficiency of gene/drug to the posterior segment of the eye. This review discusses available drug delivery systems and combination therapies together with challenges associated with each approach. As the last step, we discuss the application of nanofibrous scaffolds for the implantation of RPE progenitor cells with the aim to enhance cell adhesion and support a functionally polarized RPE monolayer.


Nanomaterials ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 21
Author(s):  
Mina Keshvardoostchokami ◽  
Sara Seidelin Majidi ◽  
Peipei Huo ◽  
Rajan Ramachandran ◽  
Menglin Chen ◽  
...  

Many types of polymer nanofibers have been introduced as artificial extracellular matrices. Their controllable properties, such as wettability, surface charge, transparency, elasticity, porosity and surface to volume proportion, have attracted much attention. Moreover, functionalizing polymers with other bioactive components could enable the engineering of microenvironments to host cells for regenerative medical applications. In the current brief review, we focus on the most recently cited electrospun nanofibrous polymeric scaffolds and divide them into five main categories: natural polymer-natural polymer composite, natural polymer-synthetic polymer composite, synthetic polymer-synthetic polymer composite, crosslinked polymers and reinforced polymers with inorganic materials. Then, we focus on their physiochemical, biological and mechanical features and discussed the capability and efficiency of the nanofibrous scaffolds to function as the extracellular matrix to support cellular function.


2021 ◽  
Vol 26 ◽  
pp. 102115
Author(s):  
B.S. Reddy ◽  
Kim Hong In ◽  
Bharat B. Panigrahi ◽  
Uma Maheswera Reddy Paturi ◽  
K.K. Cho ◽  
...  

2010 ◽  
Vol 97-101 ◽  
pp. 1768-1771 ◽  
Author(s):  
Dong Hun Kim ◽  
Riichi Murakami ◽  
Yun Hae Kim ◽  
Kyung Man Moon ◽  
Seung Jung An ◽  
...  

In order to study the characteristics of multilayer thin films with a ZnO/ metal/ ZnO structure the manufacture of the thin films was performed by a dc (direct current) magnetron sputtering system on slide glass substrates. The ZnO thin films were manufactured with the thicknesses of 30 nm and 50 nm. Three kinds of metals (Ag, Al and Cu) were deposited with the thicknesses of 4 nm, 8 nm, 12 nm and 16 nm. The electrical and optical properties of the manufactured thin films were then observed. As a result, the multilayer thin films with an Ag layer represented the most excellent electrical conductivity. This is due to the difference in the fundamental electrical properties of each of the metals. The structures of the metal particles deposited on the ZnO thin films were observed by an SEM (scanning electron microscope). The thin films exhibited a continuous structure with regular spaces between the metal particles. This resulted in an increase of transmittance. This is considered by the decrease of scattering and of light absorption on thin films with a continuous structure.


Sign in / Sign up

Export Citation Format

Share Document