The measurement of Faraday effect of translucent material in the entire visible spectrum

Measurement ◽  
2020 ◽  
Vol 162 ◽  
pp. 107912
Author(s):  
Andrzej Kruk ◽  
Mariusz Mrózek
Nanophotonics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 3003-3010
Author(s):  
Jiacheng Shi ◽  
Wen Qiao ◽  
Jianyu Hua ◽  
Ruibin Li ◽  
Linsen Chen

AbstractGlasses-free augmented reality is of great interest by fusing virtual 3D images naturally with physical world without the aid of any wearable equipment. Here we propose a large-scale spatial multiplexing holographic see-through combiner for full-color 3D display. The pixelated metagratings with varied orientation and spatial frequency discretely reconstruct the propagating lightfield. The irradiance pattern of each view is tailored to form super Gaussian distribution with minimized crosstalk. What’s more, spatial multiplexing holographic combiner with customized aperture size is adopted for the white balance of virtually displayed full-color 3D scene. In a 32-inch prototype, 16 views form a smooth parallax with a viewing angle of 47°. A high transmission (>75%) over the entire visible spectrum range is achieved. We demonstrated that the displayed virtual 3D scene not only preserved natural motion parallax, but also mixed well with the natural objects. The potential applications of this study include education, communication, product design, advertisement, and head-up display.


2017 ◽  
Vol 4 (6) ◽  
pp. 1024-1028 ◽  
Author(s):  
Rafael Sandoval-Torrientes ◽  
Joaquín Calbo ◽  
David García-Fresnadillo ◽  
José Santos ◽  
Enrique Ortí ◽  
...  

A series of new broad-absorbing rhodanine-fluorene dyes conjugated with triarylamines are presented. Spectroscopic and electrochemical characterizations, along with theoretical DFT calculations, unveil the electronic and optical properties of the dyes.


Author(s):  
Berta Carrión-Ruiz ◽  
Silvia Blanco-Pons ◽  
Jose Luis Lerma

Non-destructive rock art recording techniques are getting special attention in the last years, opening new research lines in order to improve the level of documentation and understanding of our rich legacy. This paper applies the principal component analysis (PCA) technique in images that include wavelengths between 400-700 nm (visible  range). Our approach is focused on determining the difference provided by the image processing of the visible region through four spectral images versus an image that encompasses the entire visible spectrum. The images were taken by means of optical filters that take specific wavelengths and exclude parts of the spectrum. Simulation of rock art is prepared in laboratory. For this purpose, three different pigments were made simulating the material composition of rock art paintings. The advantages of studying the visible spectrum in separate images are analysed. In addition, PCA is applied to each of the images to reduce redundant data. Finally, PCA is applied to the image that contains the entire visible spectrum and is compared with previous results. Through the results of the four visible spectral images one can begin to draw conclusions about constituent painting materials without using decorrelation techniques.


2021 ◽  
Author(s):  
◽  
Geoffry Laufersky

<p>Indium phosphide (InP) nanomaterials are attractive for countless technological applications due to their well-placed band gap energies. The quantum confinement of these semiconductors can give rise to size-dependent absorption and emission features throughout the entire visible spectrum. Therefore, InP materials can be employed as low-toxicity fluorophores that can be implemented in high value avenues such as biological probes, lighting applications, and lasing technologies. However, large scale development of these quantum dots (QDs) has been stymied by the lack of affordable and safe phosphorus precursors. Syntheses have largely been restricted to the use of dangerous chemicals such as tris(trimethylsilyl)phosphine ((TMS)₃P), which is costly and highly sensitive to oxygen and water. Recently, less-hazardous tris(dialkylamino)phosphines have been introduced to produce InP QDs on par with those utilizing (TMS)₃P. However, a poor understanding of the reaction mechanics has resulted in difficulties tuning and optimizing this method.  In this work, density functional theory (DFT) is used to identify the mechanism of this aminophosphine precursor conversion. This understanding is then implemented to design an improved InP QD synthesis, allowing for the production of high-quality materials outside of glovebox conditions. Time is spent understanding the impact of different precursor salts on the reaction mechanisms and discerning their subsequent effects on nanoparticle size and quality. The motivation of this work is to formulate safer and less technical indium phosphide quantum dot syntheses to foster non-specialist and industrial implementation of these materials.</p>


RSC Advances ◽  
2015 ◽  
Vol 5 (21) ◽  
pp. 16277-16283 ◽  
Author(s):  
Yongqian Wang ◽  
Tingting Jiang ◽  
Dawei Meng ◽  
Junhan Kong ◽  
Hanxiang Jia ◽  
...  

Self-assembled nanostructured copper compound whose absorption edge covers the entire visible spectrum was explored amply and processes excellent photocatalytic activity.


1992 ◽  
Vol 281 ◽  
Author(s):  
D. J. Stephens ◽  
S. S. He ◽  
G. Lucovsky ◽  
H. Mkkelsen ◽  
K. Leo ◽  
...  

ABSTRACTWe have prepared 19-layer Si3N4:SiO2/…‥Si3N4:SiO2/Si3N4 (HL/HL/…HL/H), Bragg reflectors by remote plasma-enhanced chemical-vapor deposition, and have adjusted the constituent layer thicknesses to generate highly reflecting films over the entire visible spectrum from approximately 1.8 eV (∼690 nm) to 3.0 eV (∼410 nm). Peak values of the reflectance, in spectral bands with half-widths of ∼0.4 to 0.5 eV, are in the range of 96 to 98 %. The spectral response functions of these stacks exhibit departures from the optical behavior as calculated for exactly periodic structures with λ/4 layer thicknesses, and can be accounted for by taking into account: i) dispersion and absorption in the optical properties of the constituent layers; and ii) departures from the idealized and constant layer thicknessses.


2016 ◽  
Vol 98 ◽  
pp. 38-43
Author(s):  
Yu Yang Su ◽  
Kai Ling Liang ◽  
Chyi Ming Leu

Indium phosphide (InP) quantum dots (QDs) with luminescence tunable over the entire visible spectrum were prepared by the conventional hot injection method. InP QDs are considered alternatives to Cadmium containing QDs for application in light-emitting devices because of showing similar optical properties to those containing toxic heavy metals. The multishell coating was shown to improve the photoluminescence quantum yield (QY) of InP QDs more strongly than the conventional ZnS shell coating. QY values were more than 60% along with FWHM of 41-73 nm can be routinely achieved, making the optical performance of InP/ZnS/ZnS or InP/ZnS/SiO2 QDs comparable to that of InP/ZnS QDs. These QDs and the polymer dissolved in the appropriate solvent and deposited by casting to give homogeneous films and showed a good level of dispersion of the QDs within the polymer.


2020 ◽  
Author(s):  
Rustamzhon Melikov ◽  
Shashi Bhushan Srivastava ◽  
Onuralp Karatum ◽  
Itir Bakis Dogru ◽  
Houman Bahmani Jalali ◽  
...  

AbstractEfficient transduction of optical energy to bioelectrical stimuli is an important goal for effective communication with biological systems. For that plasmonics has significant potential via boosting the light-matter interactions. However, plasmonics has been primarily used for heat-induced cell stimulation due to membrane capacitance change (i.e., optocapacitance). Instead, here we demonstrate that plasmonic coupling to photocapacitor biointerfaces improves safe and efficacious neuromodulating displacement charges for an average of 185% in the entire visible spectrum while maintaining the Faradaic currents below 1%. Hot-electron injection dominantly leads the enhancement of displacement current at blue spectral window, and nanoantenna effect is mainly responsible for the improvement at red-spectral region. The plasmonic photocapacitor facilitates wireless modulation of single cells at 3-orders of magnitude below the maximum retinal intensity levels corresponding to one of the most sensitive optoelectronic neural interfaces. This study introduces a new way of using plasmonics for safe and effective photostimulation of neurons and paves the way toward ultra-sensitive plasmon-assisted neurostimulation devices.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hela Benaissa ◽  
Karim Ounoughi ◽  
Isabelle Aujard ◽  
Evelyne Fischer ◽  
Rosette Goïame ◽  
...  

AbstractBiocompatible fluorescent reporters with spectral properties spanning the entire visible spectrum are indispensable tools for imaging the biochemistry of living cells and organisms in real time. Here, we report the engineering of a fluorescent chemogenetic reporter with tunable optical and spectral properties. A collection of fluorogenic chromophores with various electronic properties enables to generate bimolecular fluorescent assemblies that cover the visible spectrum from blue to red using a single protein tag engineered and optimized by directed evolution and rational design. The ability to tune the fluorescence color and properties through simple molecular modulation provides a broad experimental versatility for imaging proteins in live cells, including neurons, and in multicellular organisms, and opens avenues for optimizing Förster resonance energy transfer (FRET) biosensors in live cells. The ability to tune the spectral properties and fluorescence performance enables furthermore to match the specifications and requirements of advanced super-resolution imaging techniques.


MRS Advances ◽  
2016 ◽  
Vol 2 (5) ◽  
pp. 277-282 ◽  
Author(s):  
Koichi Matsushima ◽  
Kazuya Iwasaki ◽  
Nanoka Miyahara ◽  
Daisuke Yamashita ◽  
Hyunwoong Seo ◽  
...  

ABSTRACTWe have fabricated ZnInON (ZION), which is a pseudo-binary alloy of wurtzite ZnO and wurtzite InN and has a tunable band gap over the entire visible spectrum and a high optical absorption coefficient of 105 cm-1. ZION films grow two dimensionally at Ts = room temperature (RT) and 150°C, whereas they grow three dimensionally at Ts = 250 and 450°C. These films at RT and 150°C show a step-terrace structure with the step height of 0.27 nm, which corresponds to the height of a single-atomic-layer step and the half length of the c-lattice parameter of ZION. ZION film has the same a-lattice parameter of 0.325 nm as ZnO and a longer c-lattice parameter of 0.536 nm, indicating the coherent growth of ZION films on ZnO templates. ZION film grown at RT shows blue (2.89 and 3.08 eV) photoluminescence at RT.


Sign in / Sign up

Export Citation Format

Share Document