scholarly journals In vivo tibiofemoral skeletal kinematics and cartilage contact arthrokinematics during decline walking after isolated meniscectomy

2018 ◽  
Vol 51 ◽  
pp. 41-48 ◽  
Author(s):  
Liying Zheng ◽  
Robert Carey ◽  
Eric Thorhauer ◽  
Scott Tashman ◽  
Christopher Harner ◽  
...  
2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yan Zhou ◽  
Jianghua Ming ◽  
Yaming Li ◽  
Bochun Li ◽  
Ming Deng ◽  
...  

AbstractMicroRNAs (miRNAs) encapsulated within exosomes can serve as essential regulators of intercellular communication and represent promising biomarkers of several aging-associated disorders. However, the relationship between exosomal miRNAs and osteoarthritis (OA)-related chondrocytes and synovial fibroblasts (SFCs) remain to be clarified. Herein, we profiled synovial fluid-derived exosomal miRNAs and explored the effects of exosomal miRNAs derived from SFCs on chondrocyte inflammation, proliferation, and survival, and further assessed their impact on cartilage degeneration in a surgically-induced rat OA model. We identified 19 miRNAs within synovial fluid-derived exosomes that were differentially expressed when comparing OA and control patients. We then employed a microarray-based approach to confirm that exosomal miRNA-126-3p expression was significantly reduced in OA patient-derived synovial fluid exosomes. At a functional level, miRNA-126-3p mimic treatment was sufficient to promote rat chondrocyte migration and proliferation while also suppressing apoptosis and IL-1β, IL-6, and TNF-α expression. SFC-miRNA-126-3p-Exos were able to suppress apoptotic cell death and associated inflammation in chondrocytes. Our in vivo results revealed that rat SFC-derived exosomal miRNA-126-3p was sufficient to suppress the formation of osteophytes, prevent cartilage degeneration, and exert anti-apoptotic and anti-inflammatory effects on articular cartilage. Overall, our findings indicate that SFC exosome‐delivered miRNA-126-3p can constrain chondrocyte inflammation and cartilage degeneration. As such, SFC-miRNA-126-3p-Exos may be of therapeutic value for the treatment of patients suffering from OA.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Hyuck Joon Kwon

The prevalent nature of osteoarthritis that causes the erosion of joint surfaces and loss of mobility and muscle dystrophy that weakens the musculoskeletal system and hampers locomotion underlies the importance of developing functional replacement or regeneration of muscle and cartilage tissues. Polyelectrolyte gels have high potential as cellular scaffolds due to characteristic properties similar to biological matrixes. A number of in vitro and in vivo studies demonstrated that polyelectrolyte gels are useful for replacement and regeneration of muscle and cartilage tissues. In addition, it was also found that polyelectrolyte gels have high biocompatibility, durability, and resistance to biodegradation. Moreover, polyelectrolyte gels can overcome their drawbacks of mechanical behavior by introducing double network into the gel. This paper reviews the current status and recent progress of polyelectrolyte gel-based tissue engineering for repairs of muscle and cartilage tissues.


2012 ◽  
Vol 64 (11) ◽  
pp. 3614-3625 ◽  
Author(s):  
Gladys Valverde-Franco ◽  
Jean-Pierre Pelletier ◽  
Hassan Fahmi ◽  
David Hum ◽  
Koichi Matsuo ◽  
...  

2014 ◽  
Vol 136 (4) ◽  
Author(s):  
Robert E. Carey ◽  
Liying Zheng ◽  
Ameet K. Aiyangar ◽  
Christopher D. Harner ◽  
Xudong Zhang

In this paper, we present a new methodology for subject-specific finite element modeling of the tibiofemoral joint based on in vivo computed tomography (CT), magnetic resonance imaging (MRI), and dynamic stereo-radiography (DSX) data. We implemented and compared two techniques to incorporate in vivo skeletal kinematics as boundary conditions: one used MRI-measured tibiofemoral kinematics in a nonweight-bearing supine position and allowed five degrees of freedom (excluding flexion-extension) at the joint in response to an axially applied force; the other used DSX-measured tibiofemoral kinematics in a weight-bearing standing position and permitted only axial translation in response to the same force. Verification and comparison of the model predictions employed data from a meniscus transplantation study subject with a meniscectomized and an intact knee. The model-predicted cartilage-cartilage contact areas were examined against “benchmarks” from a novel in situ contact area analysis (ISCAA) in which the intersection volume between nondeformed femoral and tibial cartilage was characterized to determine the contact. The results showed that the DSX-based model predicted contact areas in close alignment with the benchmarks, and outperformed the MRI-based model: the contact centroid predicted by the former was on average 85% closer to the benchmark location. The DSX-based FE model predictions also indicated that the (lateral) meniscectomy increased the contact area in the lateral compartment and increased the maximum contact pressure and maximum compressive stress in both compartments. We discuss the importance of accurate, task-specific skeletal kinematics in subject-specific FE modeling, along with the effects of simplifying assumptions and limitations.


2014 ◽  
Vol 201 (1) ◽  
pp. 51-56 ◽  
Author(s):  
J.C. de Grauw ◽  
J.P.A.M. van Loon ◽  
C.H.A. van de Lest ◽  
A. Brunott ◽  
P.R. van Weeren

2018 ◽  
Vol 77 (11) ◽  
pp. 1636-1643 ◽  
Author(s):  
Marta F Bustamante ◽  
Patricia G Oliveira ◽  
Ricard Garcia-Carbonell ◽  
Adam P Croft ◽  
Jeff M Smith ◽  
...  

ObjectivesRecent studies indicate that glucose metabolism is altered in rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS). Hexokinases (HKs) catalyse the first step in glucose metabolism, and HK2 constitutes the principal HK inducible isoform. We hypothesise that HK2 contributes to the synovial lining hypertrophy and plays a critical role in bone and cartilage damage.MethodsHK1 and HK2 expression were determined in RA and osteoarthritis (OA) synovial tissue by immunohistochemistry. RA FLS were transfected with either HK1 or HK2 siRNA, or infected with either adenovirus (ad)-GFP, ad-HK1 or ad-HK2. FLS migration and invasion were assessed. To study the role of HK2 in vivo, 108 particles of ad-HK2 or ad-GFP were injected into the knee of wild-type mice. K/BxN serum transfer arthritis was induced in HK2F/F mice harbouring Col1a1-Cre (HK2Col1), to delete HK2 in non-haematopoietic cells.ResultsHK2 is particular of RA histopathology (9/9 RA; 1/8 OA) and colocalises with FLS markers. Silencing HK2 in RA FLS resulted in a less invasive and migratory phenotype. Consistently, overexpression of HK2 resulted in an increased ability to migrate and invade. It also increased extracellular lactate production. Intra-articular injection of ad-HK2 in normal knees dramatically increased synovial lining thickness, FLS activation and proliferation. HK2 was highly expressed in the synovial lining after K/BxN serum transfer arthritis. HK2Col1 mice significantly showed decreased arthritis severity, bone and cartilage damage.ConclusionHK2 is specifically expressed in RA synovial lining and regulates FLS aggressive functions. HK2 might be an attractive selective metabolic target safer than global glycolysis for RA treatment.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Yan Wang ◽  
Min Li ◽  
Pei Li ◽  
Haijun Teng ◽  
Dehong Fan ◽  
...  

Patients with bone and cartilage defects due to infection, tumors, and trauma are quite common. Repairing bone and cartilage defects is thus a major problem for clinicians. Autologous and artificial bone transplantations are associated with many challenges, such as limited materials and immune rejection. Bone and cartilage regeneration has become a popular research topic. Inorganic polyphosphate (polyP) is a widely occurring biopolymer with high-energy phosphoanhydride bonds that exists in organisms from bacteria to mammals. Much data indicate that polyP acts as a regulator of gene expression in bone and cartilage tissues and exerts morphogenetic effects on cells involved in bone and cartilage formation. Exposure of these cells to polyP leads to the increase of cytokines that promote the differentiation of mesenchymal stem cells into osteoblasts, accelerates the osteoblast mineralization process, and inhibits the differentiation of osteoclast precursors to functionally active osteoclasts. PolyP-based materials have been widely reported in in vivo and in vitro studies. This paper reviews the current cellular mechanisms and material applications of polyP in bone and cartilage regeneration.


2008 ◽  
Vol 21 (04) ◽  
pp. 337-342 ◽  
Author(s):  
M. A. Hossain ◽  
J. Park ◽  
S. H. Choi ◽  
G. Kim

SummaryDexamethasone (Dexa) has been commonly used in humans and domestic animals, particularly in the treatment of tendon injuries and cartilage degeneration. However, it is often associated with tendon rupture and impaired tendon and cartilage healing. In the present study, we investigated Dexa’s in vitro effects on the growth of cell proliferation and the induction of apoptosis in canine Achilles tendon cells and chondrocytes. Cell proliferation after treatment with Dexa for two to six days was quantified by a 2,3-bis{2-methoxy- 4-nitro-5-sulfophenyl}-2H-tetrazolium-5-carboxyanilide inner salt assay (XTT). The results showed that Dexa could inhibit the proliferation of tendon cells and chondrocytes at increasing concentrations (0.1–50 μg/ml) compared with untreated cells. Cell apoptosis was induced by Dexa, as evidenced by the typical nuclear apoptosis using Hoechst 33258 staining. Dexa increased the apoptosis of canine tendon cells and chondrocytes in a time-dependent manner. In canine tendon cells and chondrocytes that were treated with 25 and 50 μg/ml concentration of Dexa, the number of condensed apoptotic nuclei was significantly increased. In addition, culturing with Dexa and the glucocorticoid receptor blocker, mifepristone, significantly arrested apoptosis of tendon cells and chondrocytes. Based on our in vitro data, we hypothesized that in vivo treatment with glucocorticoids may diminish the proliferation of tendon and cartilage cells by increasing apoptosis and suppressing the proliferation. Our findings suggest that Dexa could be used with caution in dogs with articular or tendon problems.


Author(s):  
Armita R Manafzadeh

Abstract X-Ray Reconstruction of Moving Morphology (XROMM), though traditionally used for studies of in vivo skeletal kinematics, can also be used to precisely and accurately measure ex vivo range of motion from cadaveric manipulations. The workflow for these studies is holistically similar to the in vivo XROMM workflow, but presents several unique challenges. This paper aims to serve as a practical guide by walking through each step of the ex vivo XROMM process: how to acquire and prepare cadaveric specimens, how to manipulate specimens to collect X-ray data, and how to use these data to compute joint rotational mobility. Along the way, it offers recommendations for best practices and for avoiding common pitfalls to ensure a successful study.


Sign in / Sign up

Export Citation Format

Share Document