Absence of AGPAT2 impairs brown adipogenesis, increases IFN stimulated gene expression and alters mitochondrial morphology

Metabolism ◽  
2020 ◽  
Vol 111 ◽  
pp. 154341 ◽  
Author(s):  
Pablo J. Tapia ◽  
Ana-María Figueroa ◽  
Verónica Eisner ◽  
Lila González-Hódar ◽  
Fermín Robledo ◽  
...  
2021 ◽  
Author(s):  
Erminia Donnarumma ◽  
Michael Kohlhaas ◽  
Elodie Vimont ◽  
Etienne Kornobis ◽  
Thibaut Chaze ◽  
...  

Mitochondria are paramount to the metabolism and survival of cardiomyocytes. Here we show that Mitochondrial Fission Process 1 (MTFP1) is essential for cardiac structure and function. Constitutive knockout of cardiomyocyte MTFP1 in mice resulted in adult-onset dilated cardiomyopathy (DCM) characterized by sterile inflammation and cardiac fibrosis that progressed to heart failure and middle-aged death. Failing hearts from cardiomyocyte-restricted knockout mice displayed a general decline in mitochondrial gene expression and oxidative phosphorylation (OXPHOS) activity. Pre-DCM, we observed no defects in mitochondrial morphology, content, gene expression, OXPHOS assembly nor phosphorylation dependent respiration. However, knockout cardiac mitochondria displayed reduced membrane potential and increased non-phosphorylation dependent respiration, which could be rescued by pharmacological inhibition of the adenine nucleotide translocase ANT. Primary cardiomyocytes from pre-symptomatic knockout mice exhibited normal excitation-contraction coupling but increased sensitivity to programmed cell death (PCD), which was accompanied by an opening of the mitochondrial permeability transition pore (mPTP). Intriguingly, mouse embryonic fibroblasts deleted for Mtfp1 recapitulated PCD sensitivity and mPTP opening, both of which could be rescued by pharmacological or genetic inhibition of the mPTP regulator Cyclophilin D. Collectively, our data demonstrate that contrary to previous in vitro studies, the loss of the MTFP1 promotes mitochondrial uncoupling and increases cell death sensitivity, causally mediating pathogenic cardiac remodeling.


2021 ◽  
Author(s):  
Julia Maria Torres-Velarde ◽  
Sree Rohit Raj Kolora ◽  
Jane I. Khudyakov ◽  
Daniel E. Crocker ◽  
Peter H. Sudmant ◽  
...  

AbstractElephant seals experience natural periods of prolonged food deprivation while breeding, molting, and undergoing postnatal development. Prolonged food deprivation in elephant seals increases circulating glucocorticoids without inducing muscle atrophy, but the cellular mechanisms that allow elephant seals to cope with such conditions remain elusive. We generated a cellular model and conducted transcriptomic, metabolic, and morphological analyses to study how seal cells adapt to sustained glucocorticoid exposure. Seal muscle progenitor cells differentiate into contractile myotubes with a distinctive morphology, gene expression profile, and metabolic phenotype. Exposure to dexamethasone at three ascending concentrations for 48h modulated the expression of 6 clusters of genes related to structural constituents of muscle and pathways associated with energy metabolism and cell survival. Knockdown of the glucocorticoid receptor (GR) and downstream expression analyses corroborated that GR mediates the observed effects. Dexamethasone also decreased cellular respiration, shifted the metabolic phenotype towards glycolysis, and induced mitochondrial fission and dissociation of mitochondria-ER interactions without decreasing cell viability. Knockdown of DDIT4, a GR target involved in the dissociation of mitochondria-ER membranes, recovered respiration and modulated antioxidant gene expression. These results show that adaptation to sustained glucocorticoid exposure in elephant seal myotubes involves a metabolic shift toward glycolysis, which is supported by alterations in mitochondrial morphology and a reduction in mitochondria-ER interactions, resulting in decreased respiration without compromising cell survival.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
R Paolillo

Abstract Introduction Pressure overload-induced cardiac hypertrophy is associated with increased reactive oxygen species (ROS), inducing DNA damage and activating the protein kinase Ataxia-Telangiectasia Mutated (ATM). Recently, ATM has been also involved in the regulation of several metabolic processes, but whether and how it affects cardiac metabolism is still poorly understood. Purpose We hypothesized that ATM might play crucial roles in the maintenance of cardiomyocyte metabolic homeostasis and in the development of cardiac dysfunction in response to pressure overload. Methods Atm+/+ and Atm homozygous mutated mice (Atm−/−) underwent transverse aortic constriction (TAC) or sham operation (sham). After one week (1w), sham and TAC mice were anesthetized, cardiac function and morphometry were analyzed, and gene expression reprogramming, cardiac histology, mitochondrial morphology were performed. Metabolic profiling was carried out through untargeted metabolomics (LC-MS/MS and GC/MS), mRNA and/or protein levels analysis to investigate glycolyis, pyruvate oxidation, Krebs cycle, aminoacid synthesis, gluconeogenesis and lipid oxidation. Results Atm genetic inactivation induced cardiomyocytes hypertrophy and fetal gene reprogramming in sham mice, with normal cardiac function and in the absence of fibrosis or mitochondrial dysfunction (Figure 1A). After TAC 1w, cardiac function was significantly decreased in Atm−/− mice, compared to Atm+/+ (Figure 1B). In both sham and TAC 1w Atm−/− mice, significant metabolic abnormalities were identified, including switching of glycolysis, reduction of pyruvate oxidation (Figure 1B), activation of aminoacid synthesis and accumulation of long and short-chain fatty acid conjugated with carnitine. Pyruvate accumulation was associated to a significant reduction of pyruvate carrier (MPC1-MPC2) and pyruvate dehydrogenase (PDH) levels in sham and TAC 1w Atm−/− mice. Conclusions ATM regulates gene expression, cardiomyocyte hypertrophy and cardiac responses to pressure overload, modulating cardiac metabolism and the profile of intracellular substrate utilization in the heart. Thus, ATM might represent a novel important player in the development of cardiac dysfunction and a novel therapeutic target. Figure 1 Funding Acknowledgement Type of funding source: Other. Main funding source(s): CP was supported by Ministero dell'Istruzione, Università e Ricerca Scientifica grant (2015583WMX) and Programma STAR grant by Federico II University and Compagnia di San Paolo. RP was supported by a research grant provided by the Cardiopath PhD program.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Jeong Eon Lee ◽  
Bong Jong Seo ◽  
Min Ji Han ◽  
Yean Ju Hong ◽  
Kwonho Hong ◽  
...  

During embryonic development, cells undergo changes in gene expression, signaling pathway activation/inactivation, metabolism, and intracellular organelle structures, which are mediated by mitochondria. Mitochondria continuously switch their morphology between elongated tubular and fragmented globular via mitochondrial fusion and fission. Mitochondrial fusion is mediated by proteins encoded by Mfn1, Mfn2, and Opa1, whereas mitochondrial fission is mediated by proteins encoded by Fis1 and Dnm1L. Here, we investigated the expression patterns of mitochondria-related genes during the differentiation of mouse embryonic stem cells (ESCs). Pluripotent ESCs maintain stemness in the presence of leukemia inhibitory factor (LIF) via the JAK-STAT3 pathway but lose pluripotency and differentiate in response to the withdrawal of LIF. We analyzed the expression levels of mitochondrial fusion- and fission-related genes during the differentiation of ESCs. We hypothesized that mitochondrial fusion genes would be overexpressed while the fission genes would be downregulated during the differentiation of ESCs. Though the mitochondria exhibited an elongated morphology in ESCs differentiating in response to LIF withdrawal, only the expression of Mfn2 was increased and that of Dnm1L was decreased as expected, the other exceptions being Mfn1, Opa1, and Fis1. Next, by comparing gene expression and mitochondrial morphology, we proposed an index that could precisely represent mitochondrial changes during the differentiation of pluripotent stem cells by analyzing the expression ratios of three fusion- and two fission-related genes. Surprisingly, increased Mfn2/Dnm1L ratio was correlated with elongation of mitochondria during the differentiation of ESCs. Moreover, application of this index to other specialized cell types revealed that neural stems cells (NSCs) and mouse embryonic fibroblasts (MEFs) showed increased Mfn2/Dnm1L ratio compared to ESCs. Thus, we suggest that the Mfn2/Dnm1L ratio could reflect changes in mitochondrial morphology according to the extent of differentiation.


Reproduction ◽  
2013 ◽  
Vol 145 (1) ◽  
pp. 33-44 ◽  
Author(s):  
V Van Hoeck ◽  
J L M R Leroy ◽  
M Arias Alvarez ◽  
D Rizos ◽  
A Gutierrez-Adan ◽  
...  

Elevated plasma nonesterified fatty acid (NEFA) concentrations are associated with negative energy balance and metabolic disorders such as obesity and type II diabetes. Such increased plasma NEFA concentrations induce changes in the microenvironment of the ovarian follicle, which can compromise oocyte competence. Exposing oocytes to elevated NEFA concentrations during maturation affects the gene expression and phenotype of the subsequent embryo, notably prompting a disrupted oxidative metabolism. We hypothesized that these changes in the embryo are a consequence of modified energy metabolism in the oocyte. To investigate this, bovine cumulus oocyte complexes were matured under elevated NEFA conditions, and energy metabolism-related gene expression, mitochondrial function, and ultrastructure evaluated. It was found that expression of genes related to REDOX maintenance was modified in NEFA-exposed oocytes, cumulus cells, and resultant blastocysts. Moreover, the expression of genes related to fatty acid synthesis in embryos that developed from NEFA-exposed oocytes was upregulated. From a functional perspective, inhibition of fatty acid β-oxidation in maturing oocytes exposed to elevated NEFA concentrations restored developmental competence. There were no clear differences in mitochondrial morphology or oxygen consumption between treatments, although there was a trend for a higher mitochondrial membrane potential in zygotes derived from NEFA-exposed oocytes. These data show that the degree of mitochondrial fatty acid β-oxidation has a decisive impact on the development of NEFA-exposed oocytes. Furthermore, the gene expression data suggest that the resulting embryos adapt through altered metabolic strategies, which might explain the aberrant energy metabolism previously observed in these embryos originating from NEFA-exposed maturing oocytes.


2021 ◽  
Vol 51 (1) ◽  
Author(s):  
Ritika Singh ◽  
Ayushi Jain ◽  
Jayanth Kumar Palanichamy ◽  
T. C. Nag ◽  
Sameer Bakhshi ◽  
...  

AbstractWe explored the link between mitochondrial biogenesis and mitochondrial morphology using transmission electron microscopy (TEM) in lymphoblasts of pediatric acute lymphoblastic leukemia (ALL) patients and compared these characteristics between tumors and control samples. Gene expression of mitochondrial biogenesis markers was analysed in 23 ALL patients and 18 controls and TEM for morphology analysis was done in 15 ALL patients and 9 healthy controls. The area occupied by mitochondria per cell and the cristae cross-sectional area was observed to be significantly higher in patients than in controls (p-value = 0.0468 and p-value< 0.0001, respectively). The mtDNA copy numbers, TFAM, POLG, and c-myc gene expression were significantly higher in ALL patients than controls (all p-values< 0.01). Gene Expression of PGC-1α was higher in tumor samples. The analysis of the correlation between PGC-1α expression and morphology parameters i.e., both M/C ratio and cristae cross-sectional area revealed a positive trend (r = 0.3, p = 0.1). The increased area occupied by mitochondria and increased cristae area support the occurrence of cristae remodelling in ALL. These changes might reflect alterations in cristae dynamics to support the metabolic state of the cells by forming a more condensed network. Ultrastructural imaging can be useful for affirming changes occurring at a subcellular organellar level.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Marina Rudan ◽  
Peter Bou Dib ◽  
Marina Musa ◽  
Matea Kanunnikau ◽  
Sandra Sobočanec ◽  
...  

Self-splicing introns are mobile elements that have invaded a number of highly conserved genes in prokaryotic and organellar genomes. Here, we show that deletion of these selfish elements from the Saccharomyces cerevisiae mitochondrial genome is stressful to the host. A strain without mitochondrial introns displays hallmarks of the retrograde response, with altered mitochondrial morphology, gene expression and metabolism impacting growth and lifespan. Deletion of the complete suite of mitochondrial introns is phenocopied by overexpression of the splicing factor Mss116. We show that, in both cases, abnormally efficient transcript maturation results in excess levels of mature cob and cox1 host mRNA. Thus, inefficient splicing has become an integral part of normal mitochondrial gene expression. We propose that the persistence of S. cerevisiae self-splicing introns has been facilitated by an evolutionary lock-in event, where the host genome adapted to primordial invasion in a way that incidentally rendered subsequent intron loss deleterious.


Author(s):  
Julia María Torres-Velarde ◽  
Sree Rohit Raj Kolora ◽  
Jane I Khudyakov ◽  
Daniel E. Crocker ◽  
Peter H Sudmant ◽  
...  

Elephant seals experience natural periods of prolonged food deprivation while breeding, molting, and undergoing postnatal development. Prolonged food deprivation in elephant seals increases circulating glucocorticoids without inducing muscle atrophy, but the cellular mechanisms that allow elephant seals to cope with such conditions remain elusive. We generated a cellular model and conducted transcriptomic, metabolic, and morphological analyses to study how seal cells adapt to sustained glucocorticoid exposure. Seal muscle progenitor cells differentiate into contractile myotubes with a distinctive morphology, gene expression profile, and metabolic phenotype. Exposure to dexamethasone at three ascending concentrations for 48h modulated the expression of 6 clusters of genes related to structural constituents of muscle and pathways associated with energy metabolism and cell survival. Knockdown of the glucocorticoid receptor (GR) and downstream expression analyses corroborated that GR mediates the observed effects. Dexamethasone also decreased cellular respiration, shifted the metabolic phenotype towards glycolysis, and induced mitochondrial fission and dissociation of mitochondria-ER interactions without decreasing cell viability. Knockdown of DDIT4, a GR target involved in the dissociation of mitochondria-ER membranes, recovered respiration and modulated antioxidant gene expression. These results show that adaptation to sustained glucocorticoid exposure in elephant seal myotubes involves a metabolic shift toward glycolysis, which is supported by alterations in mitochondrial morphology and a reduction in mitochondria-ER interactions, resulting in decreased respiration without compromising cell survival.


2019 ◽  
Author(s):  
Jeong Eon Lee ◽  
Bong Jong Seo ◽  
Min Ji Han ◽  
Yean Ju Hong ◽  
Kwonho Hong ◽  
...  

AbstractDuring embryonic development, cells undergo changes in gene expression, signaling pathway activation/inactivation, metabolism, and intracellular organelle structures, which are mediated by mitochondria. Mitochondria continuously switch their morphology between elongated tubular and fragmented globular via mitochondrial fusion and fission. Mitochondrial fusion is mediated by proteins encoded by Mfn1, Mfn2, and Opa1, whereas mitochondrial fission is mediated by proteins encoded by Fis1 and Dmn1L. Here, we investigated the expression patterns of mitochondria-related genes during the differentiation of mouse embryonic stem cells (ESCs) in response to leukemia inhibitory factor (LIF) withdrawal. The expression of Mfn2 and Dnm1L was, as expected, increased and decreased, respectively. By comparing gene expression and mitochondrial morphology, we proposed an index that could precisely represent mitochondrial changes during the differentiation of pluripotent stem cells by analyzing the expression ratios of three fusion- and two fission-related genes. Surprisingly, increased Mfn2/Dnm1L ratio was correlated with elongation of mitochondria during the differentiation of ESCs. Moreover, application of this index to other specialized cell types revealed that neural stems cells (NSCs) and mouse embryonic fibroblasts (MEFs) showed increased Mfn2/Dnm1L ratio compared to ESCs. Thus, we suggest that the Mfn2/Dnm1L ratio could reflect changes in mitochondrial morphology according to the extent of differentiation.


Sign in / Sign up

Export Citation Format

Share Document