scholarly journals The potential role of Th17 immune responses in coronavirus immunopathology and vaccine-induced immune enhancement

2020 ◽  
Vol 22 (4-5) ◽  
pp. 165-167 ◽  
Author(s):  
Peter J. Hotez ◽  
Maria Elena Bottazzi ◽  
David B. Corry
Vaccines ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 107 ◽  
Author(s):  
Ralph A. Tripp ◽  
Ultan F. Power

The original antigenic sin (OAS) theory considers the outcome of the first encounter with an antigen. It favors a memory response to the original antigen upon exposure to a similar or related antigen, and includes both positive and negative impacts of past exposure on the memory response to challenge, and, in particular, on vaccine efficacy. This phenomenon is closely linked with imprinting and the hierarchical nature of immune responses to previously encountered antigens. The focus of this commentary centers on the potential role of OAS or immunological imprinting on respiratory syncytial virus memory responses.


2008 ◽  
Vol 83 (6) ◽  
pp. 2623-2631 ◽  
Author(s):  
Roberto Calcedo ◽  
Luk H. Vandenberghe ◽  
Soumitra Roy ◽  
Suryanarayan Somanathan ◽  
Lili Wang ◽  
...  

ABSTRACT Recent studies indicate that great apes and macaques chronically shed adenoviruses in the stool. Shedding of adenovirus in the stool of humans is less prevalent, although virus genomes persist in gut-associated lymphoid tissue in the majority of individual samples. Chimpanzees have high levels of broadly reactive neutralizing antibodies to adenoviruses in serum, with very low frequencies of adenovirus-specific T cells in peripheral blood. A similar situation exists in macaques; sampling of guts from macaques demonstrated adenovirus-specific T cells in lamina propria. Humans show intermediate levels of serum neutralizing antibodies, with adenovirus-specific T cells in peripheral blood of all individuals sampled and about 20% of samples from the gut, suggesting a potential role of T cells in better controlling virus replication in the gut. The overall structure of the E3 locus, which is involved in modulating the host's response to infection, is degenerate in humans compared to that in apes, which may contribute to diminished evasion of host immunity. The impact of adenovirus persistence and immune responses should be considered when using adenoviral vectors in gene therapy and genetic vaccines.


2008 ◽  
Vol 27 (3) ◽  
pp. 93-110 ◽  
Author(s):  
Hiroshi Terunuma ◽  
Xuewen Deng ◽  
Zahidunnabi Dewan ◽  
Shigeyoshi Fujimoto ◽  
Naoki Yamamoto

2021 ◽  
Vol 10 ◽  
pp. 20-25
Author(s):  
Stefan Erfurt ◽  
Meike Hoffmeister ◽  
Stefanie Oess ◽  
Katharina Asmus ◽  
Oliver Ritter ◽  
...  

Interleukin-33 (IL-33), a member of the IL-1 family, is critically involved in the modulation of the activity of a diverse range of immunocompetent cells. Essential roles have been implicated in cardioprotection, in both innate and adaptive immune responses in mucosal organs, and in the maintenance of adipose tissue cells. Over the past 10 years, several studies evaluated the usability of IL-33 as a biomarker in diseases of inflammatory and noninflammatory origin. Our group is currently evaluating the predictive role of serum IL-33 in acute kidney injury (AKI). The aim of the article is to discuss selected studies on IL-33 in different diseases and its potential role as a biomarker molecule.


2021 ◽  
Vol 16 ◽  
pp. 263310552110184
Author(s):  
Aurore Nkiliza ◽  
Utsav Joshi ◽  
James E Evans ◽  
Ghania Ait-Ghezala ◽  
Megan Parks ◽  
...  

Gulf War Illness is a multisymptomatic condition which affects 30% of veterans from the 1991 Gulf War. While there is evidence for a role of peripheral cellular and humoral adaptive immune responses in Gulf War Illness, a potential role of the adaptive immune system in the central nervous system pathology of this condition remains unknown. Furthermore, many of the clinical features of Gulf War Illness resembles those of autoimmune diseases, but the biological processes are likely different as the etiology of Gulf War Illness is linked to hazardous chemical exposures specific to the Gulf War theatre. This review discusses Gulf War chemical–induced maladaptive immune responses and a potential role of cellular and humoral immune responses that may be relevant to the central nervous system symptoms and pathology of Gulf War Illness. The discussion may stimulate investigations into adaptive immunity for developing novel therapies for Gulf War Illness.


2021 ◽  
Vol 16 ◽  
Author(s):  
Valentina Konusova ◽  
Eugene Vorbeychikov ◽  
Mark Shamtsyan

According to the concept of trained immunity (TRIM), by stimulating the immune response with one pathogen, one can strengthen it against infection by another. With this understanding, one can take advantage of such immune responses with a stimulant such as β-glucan, which does not actually cause disease in humans, but has the advantage of generating primed immune cells that will respond to a variety of deadly infections. Mushroom β-glucans are known to act as training agents that leads to an increase in immune responses when these trained cells are subjected to a secondary stimulus. Understanding whether the TRIM processes are responsible for antiviral responses will undoubtedly provide a deeper understanding of other potential antiviral strategies, as the new SARS-CoV-2 is not the first- or last-time humanity has to deal with viral pandemics. More studies and clinical evidence are necessary for better understanding of the role of β-glucans in viral infections and COVID-19.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2772-2772 ◽  
Author(s):  
Kimberly Ann Noonan ◽  
Anna Ferguson ◽  
Carol A. Huff ◽  
Amy Emerling ◽  
Stephanie Mgebroff ◽  
...  

Abstract Aim: Pre-clinical data suggest that lenalidomide imparts an immunomodulatory effect. This clinical trial in relapsed myeloma patients examined the ability of lenalidomide to augment both endogenous as well as vaccine-specific immune responses in vivo. Methods: Relapsed, lenalidomide naïve, patients treated with 3 or less prior regimens were eligible for the study. Prevnar®, a pneumococcal vaccine, was given either before or during administration of lenalidomide in two cohorts of patients. Cohort A received their first vaccination prior to administration of drug, and the second vaccine on cycle 2, day 15 of lenalidomide. Cohort B were first vaccinated on cycle 2, day 15 and then cycle 4, day 15. Patients were treated with 25mg of lenalidomide daily days 1–21 every 28 days for 6 cycles. Pneumococcal serotype titres as well as CRM-197 T cell responses quantified the B and T cell responses, respectively, to Prevnar vaccination and were correlated with lenalidomide administration. Systemic immune responsiveness was determined by delayed type hypersensitivity (DTH) responses to Candida and tetanus and quantification of cytokines in the peripheral blood (PBL) serum and bone marrow (BM) plasma. Results: A median two-fold increase in antibody responses to Prevnar was observed in cohort B, whereas cohort A demonstrated an 80% decrease in antibody titres. Antibody responses in the bone marrow were more pronounced than in blood and were greatest in Cohort B. 1.8% of the total T cell population proliferated to CRM-197 in Cohort B vs. 0% in Cohort A. Increases in DTH responses were seen in 50% of patients post lenalidomide. Luminex was utilized to measure cytokine levels pre and post lenalidomide. Globally, IL-6 levels were greatly reduced in both the BM (88% reduction) and PBL (77% reduction) samples. Both IFNγ and IL-17 were undetectable in the PBL samples, but were elevated and unchanged respectively in BM samples. Levels of IL-10 peaked in both cohorts after the first vaccination but were ultimately reduced with the administration of lenalidomide, and overall the levels were higher in the BM than PBL samples. MCP-1 and MIP-1β levels showed an overall decrease over the course of the trial. There was no alteration of IL2, IL-4, IL-5, TNFα, IL-7, IL-1 β, IL-12, IL-13, G-CSF or GM-CSF levels with the administration of lenalidomide. Conclusions: This is the first comprehensive examination of the immunomodulatory effect of lenalidomide on global and vaccine specific in vivo immune responses. We show that the most potent immune response was observed when both prime and boost vaccines were administered while receiving lenalidomide. Immune enhancement by lenalidomide was seen in both the blood and BM compartments. Of note, the serologic titres were greater in the BM than blood and the T cell responses (when observed) appeared greater in the BM. These data provide evidence of the important role of bone marrow niche in the maintenance of immune memory responses. The increased DTH response to both Candida and tetanus provides in vivo evidence of lenalidomide-mediated immune enhancement. Taken together, these data demonstrate that lenalidomide augments in vivo immune responses in patients with advanced/relapsed multiple myeloma. This study provides the rationale for utilizing this drug in combination with cancer vaccines to augment anti-tumor efficacy or with infectious vaccines. Figure Figure


2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Wiktoria Osiak ◽  
Sławomir Wątroba ◽  
Lucyna Kapka-Skrzypczak ◽  
Jacek Kurzepa

In an infant’s body, all the systems undergo significant changes in order to adapt to the new, extrauterine environment and challenges which it poses. Fragile homeostasis can be easily disrupted as the defensive mechanisms are yet imperfect. The activity of antioxidant enzymes, i.e., superoxide dismutase, catalase, and glutathione peroxidase, is low; therefore, neonates are especially vulnerable to oxidative stress. Free radical burden significantly contributes to neonatal illnesses such as sepsis, retinopathy of premature, necrotizing enterocolitis, bronchopulmonary dysplasia, or leukomalacia. However, newborns have an important ally—an inducible heme oxygenase-1 (HO-1) which expression rises rapidly in response to stress stimuli. HO-1 activity leads to production of carbon monoxide (CO), free iron ion, and biliverdin; the latter is promptly reduced to bilirubin. Although CO and bilirubin used to be considered noxious by-products, new interesting properties of those compounds are being revealed. Bilirubin proved to be an efficient free radicals scavenger and modulator of immune responses. CO affects a vast range of processes such as vasodilatation, platelet aggregation, and inflammatory reactions. Recently, developed nanoparticles consisting of PEGylated bilirubin as well as several kinds of molecules releasing CO have been successfully tested on animal models of inflammatory diseases. This paper focuses on the role of heme metabolites and their potential utility in prevention and treatment of neonatal diseases.


Sign in / Sign up

Export Citation Format

Share Document