Use of extracellular polysaccharides, secreted by Lactobacillus plantarum and Bacillus spp., as reducing indole production agents to control biofilm formation and efflux pumps inhibitor in Escherichia coli

2018 ◽  
Vol 125 ◽  
pp. 448-453 ◽  
Author(s):  
Abdelkarim Mahdhi ◽  
Nadia Leban ◽  
Ibtissem Chakroun ◽  
Sihem Bayar ◽  
Kacem Mahdouani ◽  
...  
2017 ◽  
Vol 5 ◽  
pp. 11-17 ◽  
Author(s):  
Mykola Kukhtyn ◽  
Oleksandra Berhilevych ◽  
Khrystyna Kravcheniuk ◽  
Oksana Shynkaruk ◽  
Yulia Horyuk ◽  
...  

The aim of the research was to study the features of formation of dairy equipment microflora, the ability of microorganisms to form biofilms on the noncorrosive steel surface with the different roughness and to determine the effectiveness of disinfectants. It was established, that bacteria of Bacillus, Lactobacillus genera of Enterobacteriaceae family are most often extracted from the dairy equipment after the sanitary processing by modern disinfectors, in less number of cases – staphylococci, enterococci, streptococci and pseudomonades. Extracted bacteria form mainly biofilms of the high and middle density. In 100 % of cases biofilms of the high density were formed by Bacillus spp. and Enterococcus faecalis bacteria. It indicates the fact that at the disinfection of the dairy equipment, only stable bacteria that have the ability to produce a biofilm of the high density, remain on its surface. It was established, that the dairy equipment surface relief, namely roughness, has an influence on the process of biofilm formation in Escherichia coli. On the noncorrosive steel surface with the roughness 0,16±0,065 mcm Escherichia coli form biofilms of the lower density comparing with the surface with the density 0,63–0,072 mcm during 24 hours at the temperature 17 °С. It was established, that working solutions of disinfectants P3-ansep CIP, Eco chlor, Medicarine and Maxidez were more effective as to plankton bacteria. Microorganisms, formed in biofilms, turned out stable to these disinfectants. Most effective disinfectant for the influence on bacteria on biofilms is Р3-oxonia active – 150. So, the obtained data indicate that for the effective sanitary processing of the dairy equipment it is necessary to use disinfectants that influence bacteria in biofilms.


2011 ◽  
Vol 16 (2) ◽  
pp. 69-72 ◽  
Author(s):  
KAYO MATSUMURA ◽  
SOICHI FURUKAWA ◽  
HIROKAZU OGIHARA ◽  
YASUSHI MORINAGA

mBio ◽  
2015 ◽  
Vol 6 (1) ◽  
Author(s):  
Clémentine Dressaire ◽  
Ricardo Neves Moreira ◽  
Susana Barahona ◽  
António Pedro Alves de Matos ◽  
Cecília Maria Arraiano

ABSTRACTBacteria are extremely versatile organisms that rapidly adapt to changing environments. When bacterial cells switch from planktonic growth to biofilm, flagellum formation is turned off and the production of fimbriae and extracellular polysaccharides is switched on. BolA is present in most Gram-negative bacteria, and homologues can be found from proteobacteria to eukaryotes. Here, we show that BolA is a new bacterial transcription factor that modulates the switch from a planktonic to a sessile lifestyle. It negatively modulates flagellar biosynthesis and swimming capacity inEscherichia coli. Furthermore, BolA overexpression favors biofilm formation, involving the production of fimbria-like adhesins and curli. Our results also demonstrate that BolA is a protein with high affinity to DNA and is able to regulate many genes on a genome-wide scale. Moreover, we show that the most significant targets of this protein involve a complex network of genes encoding proteins related to biofilm development. Herein, we propose that BolA is a motile/adhesive transcriptional switch, specifically involved in the transition between the planktonic and the attachment stage of biofilm formation.IMPORTANCEEscherichia colicells possess several mechanisms to cope with stresses. BolA has been described as a protein important for survival in late stages of bacterial growth and under harsh environmental conditions. BolA-like proteins are widely conserved from prokaryotes to eukaryotes. Although their exact function is not fully established at the molecular level, they seem to be involved in cell proliferation or cell cycle regulation. Here, we unraveled the role of BolA in biofilm development and bacterial motility. Our work suggests that BolA actively contributes to the decision of bacteria to arrest flagellar production and initiate the attachment to form structured communities, such as biofilms. The molecular studies of different lifestyles coupled with the comprehension of the BolA functions may be an important step for future perspectives, with health care and biotechnology applications.


2021 ◽  
Vol 8 ◽  
Author(s):  
Prasert Apiwatsiri ◽  
Pawiya Pupa ◽  
Jitrapa Yindee ◽  
Waree Niyomtham ◽  
Wandee Sirichokchatchawan ◽  
...  

Several species of lactic acid bacteria (LAB) are commonly used as probiotics and as an alternative to antibiotics in various industries, especially in the livestock industry. This study aimed to investigate the anticonjugation and antibiofilm activity of cell-free supernatant (CFS) of Thai LAB strains (Lactobacillus plantarum 22F, 25F, and Pediococcus acidilactici 72N) against colistin-resistant Escherichia coli isolates. A total of six colistin-resistant E. coli strains were isolated from different sources, including pigs, farmers, and farmhouse environments. The E. coli were characterized by plasmid profiling, PCR detection of mcr-1 gene, and antibiotic susceptibility patterns. The CFS at dilutions ≥1:16 was chosen as the proper dilution for anticonjugation assay. Besides, it could significantly reduce the transfer frequencies of resistance gene mcr-1 up to 100 times compared to the neutralizing CFS (pH 6.5). The biofilm production in the planktonic stage was reduced by non-neutralizing and neutralizing CFS determining with crystal violet staining assay up to 82 and 60%, respectively. Moreover, the non-neutralizing CFS also inhibited the biofilm formation in the sessile stage up to 52%. The biofilm illustration was confirmed by scanning electron microscopy (SEM). These results agreed with the findings of the crystal violet technique, which showed a significant reduction in cell density, aggregation, and extracellular polysaccharide (EPS) matrix. The application of Thai LAB may serve as an attractive alternative to antibiotics for reducing biofilm formation and limiting the proliferation of antibiotic-resistant genes.


Biofouling ◽  
2021 ◽  
pp. 1-11
Author(s):  
Ahmed Mathlouthi ◽  
Nabil Saadaoui ◽  
Eugenia Pennacchietti ◽  
Daniela De Biase ◽  
Mossadok Ben-Attia

Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 625
Author(s):  
Fatma Y. Ahmed ◽  
Usama Farghaly Aly ◽  
Rehab Mahmoud Abd El-Baky ◽  
Nancy G. F. M. Waly

Most of the infections caused by multi-drug resistant (MDR) P. aeruginosa strains are extremely difficult to be treated with conventional antibiotics. Biofilm formation and efflux pumps are recognized as the major antibiotic resistance mechanisms in MDR P. aeruginosa. Biofilm formation by P. aeruginosa depends mainly on the cell-to-cell communication quorum-sensing (QS) systems. Titanium dioxide nanoparticles (TDN) have been used as antimicrobial agents against several microorganisms but have not been reported as an anti-QS agent. This study aims to evaluate the impact of titanium dioxide nanoparticles (TDN) on QS and efflux pump genes expression in MDR P. aeruginosa isolates. The antimicrobial susceptibility of 25 P. aeruginosa isolates were performed by Kirby–Bauer disc diffusion. Titanium dioxide nanoparticles (TDN) were prepared by the sol gel method and characterized by different techniques (DLS, HR-TEM, XRD, and FTIR). The expression of efflux pumps in the MDR isolates was detected by the determination of MICs of different antibiotics in the presence and absence of carbonyl cyanide m-chlorophenylhydrazone (CCCP). Biofilm formation and the antibiofilm activity of TDN were determined using the tissue culture plate method. The effects of TDN on the expression of QS genes and efflux pump genes were tested using real-time polymerase chain reaction (RT-PCR). The average size of the TDNs was 64.77 nm. It was found that TDN showed a significant reduction in biofilm formation (96%) and represented superior antibacterial activity against P. aeruginosa strains in comparison to titanium dioxide powder. In addition, the use of TDN alone or in combination with antibiotics resulted in significant downregulation of the efflux pump genes (MexY, MexB, MexA) and QS-regulated genes (lasR, lasI, rhll, rhlR, pqsA, pqsR) in comparison to the untreated isolate. TDN can increase the therapeutic efficacy of traditional antibiotics by affecting efflux pump expression and quorum-sensing genes controlling biofilm production.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Huiyi Song ◽  
Ni Lou ◽  
Jianjun Liu ◽  
Hong Xiang ◽  
Dong Shang

Abstract Background Escherichia coli (E. coli) is the principal pathogen that causes biofilm formation. Biofilms are associated with infectious diseases and antibiotic resistance. This study employed proteomic analysis to identify differentially expressed proteins after coculture of E. coli with Lactobacillus rhamnosus GG (LGG) microcapsules. Methods To explore the relevant protein abundance changes after E. coli and LGG coculture, label-free quantitative proteomic analysis and qRT-PCR were applied to E. coli and LGG microcapsule groups before and after coculture, respectively. Results The proteomic analysis characterised a total of 1655 proteins in E. coli K12MG1655 and 1431 proteins in the LGG. After coculture treatment, there were 262 differentially expressed proteins in E. coli and 291 in LGG. Gene ontology analysis showed that the differentially expressed proteins were mainly related to cellular metabolism, the stress response, transcription and the cell membrane. A protein interaction network and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis indicated that the differentiated proteins were mainly involved in the protein ubiquitination pathway and mitochondrial dysfunction. Conclusions These findings indicated that LGG microcapsules may inhibit E. coli biofilm formation by disrupting metabolic processes, particularly in relation to energy metabolism and stimulus responses, both of which are critical for the growth of LGG. Together, these findings increase our understanding of the interactions between bacteria under coculture conditions.


Sign in / Sign up

Export Citation Format

Share Document