Formation of intermetallic compound layer in multi-laminated Ni–(TiB2/Al) composite sheets during annealing treatment

Micron ◽  
2013 ◽  
Vol 45 ◽  
pp. 150-154 ◽  
Author(s):  
Q.W. Wang ◽  
G.H. Fan ◽  
L. Geng ◽  
J. Zhang ◽  
Y.Z. Zhang ◽  
...  
2006 ◽  
Vol 15-17 ◽  
pp. 381-386 ◽  
Author(s):  
I.H. Hwang ◽  
Takehiko Watanabe ◽  
Y. Doi

We tried to join steel to Al-Mg alloy using a resistance spot welding method. The effect of Mg in Al-Mg alloy on the strength and the interfacial microstructure of the joint was investigated. Additionally, the effect of insert metal of commercially pure aluminum, which was put into the bonding interface, on the joint strength was examined. The obtained results were as follows. The cross-tensile strength of a joint between SS400 steel and commercially pure aluminum (SS400/Al) was high and fracture occurred in the aluminum base metal. However, the strength of a joint between SS400 and Al-Mg alloy was remarkably low and less than 30% of that of the SS400/Al joint. An intermetallic compound layer developed so thickly at the bonded interface of the SS400/Al-Mg alloy joint that the joint strength decreased. The intermetallic compound layer developed more thickly as Mg content in the Al-Mg alloy increased. Using insert metal of commercially pure aluminum containing little Mg successfully improved the strength of the SS400/Al-Mg alloy joint and the strength was equivalent to that of the base metal.


2015 ◽  
Vol 754-755 ◽  
pp. 546-550 ◽  
Author(s):  
Rita Mohd Said ◽  
Norainiza Saud ◽  
Mohd Arif Anuar Mohd Salleh ◽  
Mohd Nazree Derman ◽  
Mohd Izrul Izwan Ramli ◽  
...  

The effects of SiC on wettability and intermetallic compound (IMC) formation of Sn-Cu-Ni solder paste composite were systematically investigated. Lead-free solder paste composite was produced by mixing silicon carbide (SiC) particle with Sn-Cu-Ni (SN100C) solder paste. The wettability of composite solder was studied by observing the contact angle between solder and copper substrate. The IMC phase formation on copper substrate interface was identified using X-ray diffraction (XRD). The phase as detected in the composite solder is Cu6Sn5.The wettability of composite solder was observed through contact angle between solder and copper substrate and Sn-Cu-Ni + 1.0 wt.% SiC shows improvements in wetting angle and suppresses the IMCs formation.


2020 ◽  
Vol 307 ◽  
pp. 26-30
Author(s):  
Azman Jalar ◽  
Maria Abu Bakar ◽  
Mohd. Zulhakimi Ab. Razak ◽  
Norliza Ismail

Evaluating the growth kinetics is one of the most important characteristic in assessing the quality and reliability of metallurgical joining, especially in electronics packaging such as soldering and wire bonding technology. The growth kinetics is normally assessed using Arrhenius equation that involves diffusion activities due to thermally activated process. The well-known factors of thermal and time together with generally accepted growth exponent have been widely used for this assessment. The intermetallic compound layer which is the by-product of metallurgical reaction during soldering process has been exposed to high temperature to accelerate its growth. The cross-section of the joining was observed using optical microscope to quantify the layer of intermetallic compound. Morphological effect and shape factor of the layer have been analysed in complement with the effect of temperature and time on the growth behaviour. Directional growth and irregularities shape of the intermetallic layer show some inconsistency on the selection of growth exponent. The effect of initial size of intermetallic layer must also be considered in this assessment. This study suggests that the morphological effect must be analysed prior to the selection the growth exponent in assessing growth behaviour and kinetics of intermetallic layer in metallurgical joining.


Sign in / Sign up

Export Citation Format

Share Document