Chromatic and spherical aberration correction for silicon aplanatic solid immersion lens for fault isolation and photon emission microscopy of integrated circuits

2011 ◽  
Vol 51 (9-11) ◽  
pp. 1637-1639 ◽  
Author(s):  
B.B. Goldberg ◽  
A. Yurt ◽  
Y. Lu ◽  
E. Ramsay ◽  
F.H. Köklü ◽  
...  
Author(s):  
Soon Lim ◽  
Jian Hua Bi ◽  
Lian Choo Goh ◽  
Soh Ping Neo ◽  
Sudhindra Tatti

Abstract The progress of modern day integrated circuit fabrication technology and packaging has made fault isolation using conventional emission microscopy via the top of the integrated circuit more difficult, if not impossible. This is primarily due to the use of increased levels and density of metal-interconnect, and the advent of new packaging technology, e.g. flip-chip, ball-grid array and lead-on-chip, etc. Backside photon emission microscopy, i.e. performing photon emission microscopy through the bulk of the silicon via the back of the integrated circuit is a solution to this problem. This paper outlines the failure analysis of sub-micron silicon integrated circuits using backside photon emission microscopy. Sample preparation, practical difficulties encountered and case histories will be discussed.


Author(s):  
A. Yurt ◽  
E. Ramsay ◽  
F. H. Köklü ◽  
M. S. Ünlü ◽  
B. B. Goldberg

Abstract We investigate a complementary objective lens design for correcting chromatic aberration in the use of a silicon aplanatic solid immersion lens for back-side photon emission microscopy of metal-oxide-semiconductor circuits. Our simulations demonstrate that the chromatic aberration due to material dispersion of aplanatic silicon solid immersion lenses can be reduced by more than an order of magnitude in the spectral window 1.5µm-2.1µm, providing new diffraction limited performance. On-axis and off-axis imaging performance of the proposed optical design is evaluated.


2012 ◽  
Vol 52 (9-10) ◽  
pp. 2120-2122 ◽  
Author(s):  
Y. Lu ◽  
E. Ramsay ◽  
C.R. Stockbridge ◽  
A. Yurt ◽  
F.H. Köklü ◽  
...  

Author(s):  
Syd Wilson ◽  
Manoj Nair ◽  
Michael Vicker ◽  
Richard B. Meador ◽  
George Smoot ◽  
...  

Abstract First silicon of a cost effective, BICMOS mixed signal RF/IF integrated circuit (IC) for third generation (3G) cellular phones showed high leakage current on the analog receive supply pins in “battery save” mode. Our tasks were to identify and isolate the source of leakage and to fix the design. Alternate debug techniques were used to isolate the cause of the leakage and provide a solution after inconclusive results were obtained using photon emission microscopy,(1) and infrared microthermography techniques.


Author(s):  
Ivo Vogt ◽  
Christian Boit ◽  
Tomonori Nakamura ◽  
Babak Motamedi

Abstract This paper provides a detailed analysis on the optical detection of temperature effects in FinFETs via (spectral) photon emission microscopy (SPEM/PEM) with InGaAs detector and electro-optical frequency mapping (EOFM, similar to LVI) for 14/16 nm Qualcomm Inc. FinFETs. It analyzes physical parameters of the FinFETs such as electron temperature and the relation between signal curve and operating condition of the device by photon emission slopes and spectra. The paper also traces device self-heating effects within the FinFETs by means of EOFM signal courses. With EOFM it was possible to detect self-heating effects of the FinFETs providing a further method to estimate device and substrate heating. Results showed that it is possible to obtain valuable device parameter information (for example, electron temperatures and self-heating) via optical investigations (PEM/ EOFM), which are not accessible electrically in modern integrated circuits. This information adds further details to device reliability and functionality approximations.


Author(s):  
David P. Vallett

Abstract This paper presents detailed results of scanning SQUID microscopy (SSM) analyses performed on the frontside and backside of both loose and packaged die. Optical and SEM images of localized defects are shown. Comparisons with alternative physical fault isolation (PFI) techniques like liquid crystal (LC), Schlieren thermal mapping (STM), temperature induced voltage alteration (TIVA), and photon emission microscopy (PEM) are included. Finally, limitations with and potential improvements for die level SSM are also discussed.


Author(s):  
Ikuo Arata ◽  
Shigeru Sakamoto ◽  
Yoshiyuki Yokoyama ◽  
Hirotoshi Terada

Abstract SIL(Solid Immersion Lens) is well investigated for optical pickup application because of its capability of high resolution. We applied this technique to microscopy, especially for precise observation of semiconductors. And also we applied it to fault isolation techniques like emission microscopy , OBIRCH(Optical Beam Induced Resistance Change) and TIVA,SEI. We found significant enhancement of resolution and sensitvity by using SIL. Applying this technique to emission microscopy, we should be aware of optical absorption charactristics of SIL lens materials. We investigated proper SIL lens materials for emission microscopy and laser scanning applications, and checked performance of Si(Silicon)-SIL and GaP(Gallium phosphide)-SIL. We also compared combinations of some kinds of SILs and detectors like C-CCD(cooled CCD) camera, MCT(HgCdTe) camera and position sensitive detector with InGaAs photo cathode II(image intensifier).


Author(s):  
Sagar Karki

Abstract With advancements in technology, it is nearly impossible to find the defects in integrated circuits without applying appropriate failure isolation techniques. Failure isolation is a critical step in identifying the physical defect on integrated circuits. This paper addresses the challenges imposed by floating node conditions on both analog and digital circuitry, and a case study for each circuit type is presented. Different approaches along with the challenges involved in isolating each case in a very timely manner are addressed. Finally, the usefulness of global isolation tools, such as PEM (Photon Emission Microscopy), FIB (Focused Ion Beam), and micro-probing, is also discussed.


2014 ◽  
Vol 904 ◽  
pp. 277-281
Author(s):  
Jian Wen Lian ◽  
Xiao Ling Lin ◽  
Ruo He Yao

With the increasing integration and complexity of microelectronic devices, fault isolation has been challenged. Photon Emission Microscopy (PEM) and Optical Beam Induced Resistance Change (OBIRCH) are effective tools for defect localization and fault characterization in failure analysis. In this paper, the principles and different application condition of PEM and OBIRCH are discussed. PEM is very helpful for locating defects emitting photon, but can not detect the defects which have no photon emitting, such as shorted metal interconnects; OBIRCH as a complementary, has a high success rate for locating resistance defects. Two cases with failure mechanisms illuminated are presented to show the different application of PEM and OBIRCH.


Author(s):  
Paul Hubert P. Llamera ◽  
Camille Joyce G. Garcia-Awitan

Abstract Lock-in thermography (LIT), known as a powerful nondestructive fault localization technique, can also be used for microscopic failure analysis of integrated circuits (ICs). The dynamic characteristic of LIT in terms of measurement, imaging and sensitivity, is a distinct advantage compared to other thermal fault localization methods as well as other fault isolation techniques like emission microscopy. In this study, LIT is utilized for failure localization of units exhibiting functional failure. Results showed that LIT was able to point defects with emissions in the mid-wave infra-red (MWIR) range that Photo Emission Microscopy (PEM) with near infrared (NIR) to short- wave infra-red (SWIR) detection wavelength sensitivity cannot to detect.


Sign in / Sign up

Export Citation Format

Share Document