Leakage current study and relevant defect localization in integrated circuit failure analysis

2015 ◽  
Vol 55 (3-4) ◽  
pp. 463-469 ◽  
Author(s):  
Chunlei Wu ◽  
Suying Yao ◽  
Bergès Corinne
2018 ◽  
Author(s):  
Ke-Ying Lin ◽  
Chih-Yi Tang ◽  
Yu Chi Wang

Abstract The paper demonstrates the moving of lock-in thermography (LIT) spot location by adjusting the lock-in frequency from low to high. Accurate defect localization in stacked-die devices was decided by the fixed LIT spot location after the lock-in frequency was higher than a specific value depending on the depth of the defect in the IC. Physical failure analysis was performed based on LIT results, which provided clear physical defect modes of the stacked-die devices.


Author(s):  
Amy Poe ◽  
Steve Brockett ◽  
Tony Rubalcava

Abstract The intent of this work is to demonstrate the importance of charged device model (CDM) ESD testing and characterization by presenting a case study of a situation in which CDM testing proved invaluable in establishing the reliability of a GaAs radio frequency integrated circuit (RFIC). The problem originated when a sample of passing devices was retested to the final production test. Nine of the 200 sampled devices failed the retest, thus placing the reliability of all of the devices in question. The subsequent failure analysis indicated that the devices failed due to a short on one of two capacitors, bringing into question the reliability of the dielectric. Previous ESD characterization of the part had shown that a certain resistor was likely to fail at thresholds well below the level at which any capacitors were damaged. This paper will discuss the failure analysis techniques which were used and the testing performed to verify the failures were actually due to ESD, and not caused by weak capacitors.


Author(s):  
Kristopher D. Staller ◽  
Corey Goodrich

Abstract Soft Defect Localization (SDL) is a dynamic laser-based failure analysis technique that can detect circuit upsets (or cause a malfunctioning circuit to recover) by generation of localized heat or photons from a rastered laser beam. SDL is the third and seldom used method on the LSM tool. Most failure analysis LSM sessions use the endo-thermic mode (TIVA, XIVA, OBIRCH), followed by the photo-injection mode (LIVA) to isolate most of their failures. SDL is seldom used or attempted, unless there is a unique and obvious failure mode that can benefit from the application. Many failure analysts, with a creative approach to the analysis, can employ SDL. They will benefit by rapidly finding the location of the failure mechanism and forgoing weeks of nodal probing and isolation. This paper will cover circuit signal conditioning to allow for fast dynamic failure isolation using an LSM for laser stimulation. Discussions of several cases will demonstrate how the laser can be employed for triggering across a pass/fail boundary as defined by voltage levels, supply currents, signal frequency, or digital flags. A technique for manual input of the LSM trigger is also discussed.


Author(s):  
H.H. Yap ◽  
P.K. Tan ◽  
G.R. Low ◽  
M.K. Dawood ◽  
H. Feng ◽  
...  

Abstract With technology scaling of semiconductor devices and further growth of the integrated circuit (IC) design and function complexity, it is necessary to increase the number of transistors in IC’s chip, layer stacks, and process steps. The last few metal layers of Back End Of Line (BEOL) are usually very thick metal lines (>4μm thickness) and protected with hard Silicon Dioxide (SiO2) material that is formed from (TetraEthyl OrthoSilicate) TEOS as Inter-Metal Dielectric (IMD). In order to perform physical failure analysis (PFA) on the logic or memory, the top thick metal layers must be removed. It is time-consuming to deprocess those thick metal and IMD layers using conventional PFA workflows. In this paper, the Fast Laser Deprocessing Technique (FLDT) is proposed to remove the BEOL thick and stubborn metal layers for memory PFA. The proposed FLDT is a cost-effective and quick way to deprocess a sample for defect identification in PFA.


Author(s):  
Julie Segal ◽  
Arman Sagatelian ◽  
Bob Hodgkins ◽  
Tom Ho ◽  
Ben Chu ◽  
...  

Abstract Physical failure analysis (FA) of integrated circuit devices that fail electrical test is an important part of the yield improvement process. This article describes how the analysis of existing data from arrayed devices can be used to replace physical FA of some electrical test failures, and increase the value of physical FA results. The discussion is limited to pre-repair results. The key is to use classified bitmaps and determine which signature classification correlates to which type of in-line defect. Using this technique, physical failure mechanisms can be determined for large numbers of failures on a scale that would be unfeasible with de-processing and physical FA. If the bitmaps are classified, two-way correlation can be performed: in-line defect to bitmap failure, as well as bitmap signature to in-line defect. Results also demonstrate the value of analyzing memory devices failures, even those that can be repaired, to gain understanding of defect mechanisms.


Author(s):  
Hui Peng Ng ◽  
Ghim Boon Ang ◽  
Chang Qing Chen ◽  
Alfred Quah ◽  
Angela Teo ◽  
...  

Abstract With the evolution of advanced process technology, failure analysis is becoming much more challenging and difficult particularly with an increase in more erratic defect types arising from non-visual failure mechanisms. Conventional FA techniques work well in failure analysis on defectively related issue. However, for soft defect localization such as S/D leakage or short due to design related, it may not be simple to identify it. AFP and its applications have been successfully engaged to overcome such shortcoming, In this paper, two case studies on systematic issues due to soft failures were discussed to illustrate the AFP critical role in current failure analysis field on these areas. In other words, these two case studies will demonstrate how Atomic Force Probing combined with Scanning Capacitance Microscopy were used to characterize failing transistors in non-volatile memory, identify possible failure mechanisms and enable device/ process engineers to make adjustment on process based on the electrical characterization result. [1]


Author(s):  
Kevin Sanchez ◽  
Romain Desplats ◽  
Philippe Perdu ◽  
Felix Beaudoin ◽  
Sylvain Dudit ◽  
...  

Abstract In this paper we report on the application field of Dynamic Laser Stimulation (DLS) techniques to Integrated Circuit (IC) analysis. The effects of thermal and photoelectric laser stimulation on ICs are presented. Implementations, practical considerations and applications are presented for techniques based on functional tests like Soft Defect Localization (SDL) and Laser Assisted Device Alteration (LADA). A new methodology, Delay Variation Mapping (DVM), will also be presented and discussed.


Author(s):  
Alan Kennen ◽  
John F. Guravage ◽  
Lauren Foster ◽  
John Kornblum

Abstract Rapidly changing technology highlights the necessity of developing new failure analysis methodologies. This paper will discuss the combination of two techniques, Design for Test (DFT) and Focused Ion Beam (FIB) analysis, as a means for successfully isolating and identifying a series of high impedance failure sites in a 0.35 μm CMOS design. Although DFT was designed for production testing, the failure mechanism discussed in this paper may not have been isolated without this technique. The device of interest is a mixed signal integrated circuit that provides a digital up-convert function and quadrature modulation. The majority of the circuit functions are digital and as such the majority of the die area is digital. For this analysis, Built In Self Test (BIST) circuitry, an evaluation board for bench testing and FIB techniques were used to successfully identify an unusual failure mechanism. Samples were subjected to Highly Accelerated Stress Test (HAST) as part of the device qualification effort. Post-HAST electrical testing at 200MHz indicated that two units were non-functional. Several different functional blocks on the chip failed electrical testing. One part of the circuitry that failed was the serial interface. The failure analysis team decided to look at the serial interface failure mode first because of the simplicity of the test. After thorough analysis the FA team discovered increasing the data setup time at the serial port input allowed the device to work properly. SEM and FIB techniques were performed which identified a high impedance connection between a metal layer and the underlying via layer. The circuit was modified using a FIB edit, after which all vectors were read back correctly, without the additional set-up time.


1996 ◽  
Vol 445 ◽  
Author(s):  
Nickolaos Strifas ◽  
Aris Christou

AbstractThe reliability of plastic packaged integrated circuits was assessed from the point of view of interfacial mechanical integrity. It is shown that the effect of structural weaknesses caused by poor bonding, voids, microcracks or delamination may not be evident in the electrical performance characteristics, but may cause premature failure. Acoustic microscopy (C-SAM) was selected for nondestructive failure analysis of the plastic integrated circuit (IC) packages. Integrated circuits in plastic dual in line packages were initially subjected to temperature (25 °C to 85 °C) and humidity cycling (50 to 85 %) where each cycle was of one hour duration and for over 100 cycles and then analyzed. Delamination at the interfaces between the different materials within the package, which is a major cause of moisture ingress and subsequent premature package failure, was measured. The principal areas of delamination were found along the leads extending from the chip to the edge of the molded body and along the die surface itself. Images of the 3-D internal structure were produced that were used to determine the mechanism for a package failure. The evidence of corrosion and stress corrosion cracks in the regions of delamination was identified.


Sign in / Sign up

Export Citation Format

Share Document