Estrogen related receptors (ERRs): A new dawn in transcriptional control of mitochondrial gene networks

Mitochondrion ◽  
2011 ◽  
Vol 11 (4) ◽  
pp. 544-552 ◽  
Author(s):  
Lillian J. Eichner ◽  
Vincent Giguère
2015 ◽  
Vol 61 (8) ◽  
pp. 521-530 ◽  
Author(s):  
Ragunath Singaravelu ◽  
Prashanth Srinivasan ◽  
John Paul Pezacki

The metabolic interplay between hosts and viruses plays a crucial role in determining the outcome of viral infection. Viruses reorchestrate the host’s primary metabolic gene networks, including genes associated with mevalonate and isoprenoid synthesis, to acquire the necessary energy and structural components for their viral life cycles. Recent work has demonstrated that the interferon-mediated antiviral response suppresses the sterol pathway through production of a signalling molecule, 25-hydroxycholesterol (25HC). This oxysterol has been shown to exert multiple effects, both through incorporation into host cellular membranes as well as through transcriptional control. Herein, we summarize our current understanding of the multifunctional roles of 25HC in the mammalian innate antiviral response.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Stella Tommasi ◽  
Niccolo Pabustan ◽  
Meng Li ◽  
Yibu Chen ◽  
Kimberly D. Siegmund ◽  
...  

AbstractWe constructed and analyzed the whole transcriptome in leukocytes of healthy adult vapers (with/without a history of smoking), ‘exclusive’ cigarette smokers, and controls (non-users of any tobacco products). Furthermore, we performed single-gene validation of expression data, and biochemical validation of vaping/smoking status by plasma cotinine measurement. Computational modeling, combining primary analysis (age- and sex-adjusted limmaVoom) and sensitivity analysis (cumulative e-liquid- and pack-year modeling), revealed that ‘current’ vaping, but not ‘past’ smoking, is significantly associated with gene dysregulation in vapers. Comparative analysis of the gene networks and canonical pathways dysregulated in vapers and smokers showed strikingly similar patterns in the two groups, although the extent of transcriptomic changes was more pronounced in smokers than vapers. Of significance is the preferential targeting of mitochondrial genes in both vapers and smokers, concurrent with impaired functional networks, which drive mitochondrial DNA-related disorders. Equally significant is the dysregulation of immune response genes in vapers and smokers, modulated by upstream cytokines, including members of the interleukin and interferon family, which play a crucial role in inflammation. Our findings accord with the growing evidence on the central role of mitochondria as signaling organelles involved in immunity and inflammatory response, which are fundamental to disease development.


2003 ◽  
Vol 358 (1429) ◽  
pp. 181-189 ◽  
Author(s):  
Stefan Binder ◽  
Axel Brennicke

The informational content of the mitochondrial genome in plants is, although small, essential for each cell. Gene expression in these organelles involves a number of distinct transcriptional and post–transcriptional steps. The complex post–transcriptional processes of plant mitochondria such as 5′ and 3′ RNA processing, intron splicing, RNA editing and controlled RNA stability extensively modify individual steady–state RNA levels and influence the mRNA quantities available for translation. In this overview of the processes in mitochondrial gene expression, we focus on confirmed and potential sites of regulatory interference and discuss the evolutionary origins of the transcriptional and post–transcriptional processes.


Author(s):  
Sonali N. Reisinger ◽  
Spyros Sideromenos ◽  
Orsolya Horvath ◽  
Sophia Derdak ◽  
Ana Cicvaric ◽  
...  

Abstract The signal transducer and activator of transcription 3 (STAT3) signalling pathway is activated through phosphorylation by Janus kinases in response to a diverse set of immunogenic and non-immunogenic triggers. Several distinct lines of evidence propose an intricate involvement of STAT3 in neural function relevant to behaviour in health and disease. However, in part due to the pleiotropic effects resulting from its DNA binding activity and the consequent regulation of expression of a variety of genes with context-dependent cellular consequences, the precise nature of STAT3 involvement in the neural mechanisms underlying psychopathology remains incompletely understood. Here, we focused on the midbrain serotonergic system, a central hub for the regulation of emotions, to examine the relevance of STAT3 signalling for emotional behaviour in mice by selectively knocking down raphe STAT3 expression using germline genetic (STAT3 KO) and viral-mediated approaches. Mice lacking serotonergic STAT3 presented with reduced negative behavioural reactivity and a blunted response to the sensitising effects of amphetamine, alongside alterations in midbrain neuronal firing activity of serotonergic neurons and transcriptional control of gene networks relevant for neuropsychiatric disorders. Viral knockdown of dorsal raphe (DR) STAT3 phenocopied the behavioural alterations of STAT3 KO mice, excluding a developmentally determined effect and suggesting that disruption of STAT3 signalling in the DR of adult mice is sufficient for the manifestation of behavioural traits relevant to psychopathology. Collectively, these results suggest DR STAT3 as a molecular gate for the control of behavioural reactivity, constituting a mechanistic link between the upstream activators of STAT3, serotonergic neurotransmission and psychopathology.


2021 ◽  
Vol 22 (6) ◽  
pp. 1799-1811
Author(s):  
Cecile Meneur ◽  
Sangavi Eswaran ◽  
Divya Adiga ◽  
Sriharikrishnaa S ◽  
Nadeem G ◽  
...  

2006 ◽  
Vol 73 ◽  
pp. 85-96 ◽  
Author(s):  
Richard J. Reece ◽  
Laila Beynon ◽  
Stacey Holden ◽  
Amanda D. Hughes ◽  
Karine Rébora ◽  
...  

The recognition of changes in environmental conditions, and the ability to adapt to these changes, is essential for the viability of cells. There are numerous well characterized systems by which the presence or absence of an individual metabolite may be recognized by a cell. However, the recognition of a metabolite is just one step in a process that often results in changes in the expression of whole sets of genes required to respond to that metabolite. In higher eukaryotes, the signalling pathway between metabolite recognition and transcriptional control can be complex. Recent evidence from the relatively simple eukaryote yeast suggests that complex signalling pathways may be circumvented through the direct interaction between individual metabolites and regulators of RNA polymerase II-mediated transcription. Biochemical and structural analyses are beginning to unravel these elegant genetic control elements.


Sign in / Sign up

Export Citation Format

Share Document