Investigation of spin polarization in Gd-doped ZnO films for high-performance organic spintronic devices

2022 ◽  
Vol 276 ◽  
pp. 115536
Author(s):  
Norhidayah Che Ani ◽  
Mohd Zainizan Sahdan ◽  
Nafarizal Nayan ◽  
Feri Adriyanto ◽  
Kusnanto Mukti Wibowo
2010 ◽  
Vol 67 ◽  
pp. 192-197 ◽  
Author(s):  
Heidemarie Schmidt

The magnetoresistance of n-type conducting, paramagnetic Co-doped ZnO films prepared by pulsed laser deposition on sapphire substrates has been studied experimentally and theoretically. Positive magnetoresistance (MR) of 124% has been observed in the film with the lowest electron concentration of 8.3·1017 cm−3, while only a negative MR of −1.9% was observed in the film with an electron concentration of 9.9·1019 cm−3 at 5 K. The positive MR is attributed to the quantum correction on the conductivity due to the <em>s</em>-<em>d </em>exchange interaction induced spin splitting of the conduction band. The negative MR is attributed to the magnetic field suppressed weak localization [1]. Voltage control of the electron concentration in Schottky diodes revealed a drastic change of the magnetoresistance and demonstrated the electrically controllable magnetotransport behavior in Co-doped ZnO [2]. The magnetically controllable spin polarization in Co-doped ZnO has been demonstrated at 5 K in magnetic tunnel junctions with Co-doped ZnO as a bottom electrode and Co as a top electrode [3]. There spin-polarized electrons were injected from Co-doped ZnO to a crystallized Al2O3 layer and tunnelled through an amorphous Al2O3 barrier. Our studies demonstrate the spin polarization and manipulation in Co-doped ZnO.


2021 ◽  
Vol 860 ◽  
pp. 158518
Author(s):  
Anh Tuan Thanh Pham ◽  
Dung Van Hoang ◽  
Truong Huu Nguyen ◽  
Oanh Kieu Truong Le ◽  
Deniz P. Wong ◽  
...  

2013 ◽  
Vol 5 (14) ◽  
pp. 6687-6693 ◽  
Author(s):  
Jingjing Chang ◽  
Zhenhua Lin ◽  
Chunxiang Zhu ◽  
Chunyan Chi ◽  
Jie Zhang ◽  
...  

2018 ◽  
Author(s):  
Peter George Gordon ◽  
Goran Bacic ◽  
Gregory P. Lopinski ◽  
Sean Thomas Barry

Al-doped ZnO (AZO) is a promising earth-abundant alternative to Sn-doped In<sub>2</sub>O<sub>3</sub> (ITO) as an n-type transparent conductor for electronic and photovoltaic devices; AZO is also more straightforward to deposit by atomic layer deposition (ALD). The workfunction of this material is particularly important for the design of optoelectronic devices. We have deposited AZO films with resistivities as low as 1.1 x 10<sup>-3</sup> Ωcm by ALD using the industry-standard precursors trimethylaluminum (TMA), diethylzinc (DEZ), and water at 200<sup>◦</sup>C. These films were transparent and their elemental compositions showed reasonable agreement with the pulse program ratios. The workfunction of these films was measured using a scanning Kelvin Probe (sKP) to investigate the role of aluminum concentration. In addition, the workfunction of AZO films prepared by two different ALD recipes were compared: a “surface” recipe wherein the TMA was pulsed at the top of each repeating AZO stack, and a interlamellar recipe where the TMA pulse was introduced halfway through the stack. As aluminum doping increases, the surface recipe produces films with a consistently higher workfunction as compared to the interlamellar recipe. The resistivity of the surface recipe films show a minimum at a 1:16 Al:Zn atomic ratio and using an interlamellar recipe, minimum resistivity was seen at 1:19. The film thicknesses were characterized by ellipsometry, chemical composition by EDX, and resistivity by four-point probe.<br>


2013 ◽  
Vol 27 (10) ◽  
pp. 1112-1116 ◽  
Author(s):  
Ke-Wei SUN ◽  
Wan-Cheng ZHOU ◽  
Shan-Shan HUANG ◽  
Xiu-Feng TANG

2020 ◽  
Author(s):  
M. Ismail. Fathima ◽  
K. S. Joseph Wilson ◽  
A. M. S. Arulanantham

Sign in / Sign up

Export Citation Format

Share Document