Effect of ultrasonic micro-arc oxidation on the antibacterial properties and cell biocompatibility of Ti-Cu alloy for biomedical application

2020 ◽  
Vol 115 ◽  
pp. 110921
Author(s):  
Jiali Hu ◽  
Haixia Li ◽  
Xiaoyan Wang ◽  
Lei Yang ◽  
Mian Chen ◽  
...  
Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 353
Author(s):  
Yanting Han ◽  
Qianqian Wei ◽  
Pengbo Chang ◽  
Kehui Hu ◽  
Oseweuba Valentine Okoro ◽  
...  

Hydroxyapatite (HA) and HA-based nanocomposites have been recognized as ideal biomaterials in hard tissue engineering because of their compositional similarity to bioapatite. However, the traditional HA-based nanocomposites fabrication techniques still limit the utilization of HA in bone, cartilage, dental, applications, and other fields. In recent years, three-dimensional (3D) printing has been shown to provide a fast, precise, controllable, and scalable fabrication approach for the synthesis of HA-based scaffolds. This review therefore explores available 3D printing technologies for the preparation of porous HA-based nanocomposites. In the present review, different 3D printed HA-based scaffolds composited with natural polymers and/or synthetic polymers are discussed. Furthermore, the desired properties of HA-based composites via 3D printing such as porosity, mechanical properties, biodegradability, and antibacterial properties are extensively explored. Lastly, the applications and the next generation of HA-based nanocomposites for tissue engineering are discussed.


2021 ◽  
Author(s):  
Mehrnoush Tangestani ◽  
Paul Broady ◽  
Arvind Varsani

Aim: To explore seaweed-associated bacteria as prospective producers of bioactive material with antibacterial properties. Materials & methods: 143 bacterial species were isolated from the surface of 15 New Zealand marine macroalgae. Bacterial extracts obtained using dimethyl sulfoxide and ethyl acetate were screened for antagonistic activities against three antimicrobial susceptibility indicators: Kocuria rhizophila, Staphylococcus epidermidis and Escherichia coli, using well-diffusion method. For selected species, minimum inhibitory concentration was determined, followed by a phylogenetic identification based on 16S rRNA gene sequences. Results: Among all bacteria screened, seven that belonged to the genera Vibrio, Pseudoalteromonas, Psychromonas and Cobetia, showed antagonistic activity against all three indicators. Conclusion: Seaweed-associated bacteria produce bioactive compounds with antimicrobial potential and possible biomedical application in aquatic habitats.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Baoe Li ◽  
Xiaomei Xia ◽  
Miaoqi Guo ◽  
Yu Jiang ◽  
Yu Li ◽  
...  

Abstract Titanium (Ti) is the widely used implant material in clinic, however, failures still frequently occur due to its bioinertness and poor antibacterial property. To improve the biological and antibacterial properties of Ti implants, micro-nanostructured hydroxyapatite (HA) coating was prepared on Ti surface by micro-arc oxidation (MAO), and then the antibacterial agent of chitosan (CS) was loaded on the HA surface through dip-coating method. The results showed that the obtained HA/CS composite coating accelerated the formation of apatite layer in SBF solution, enhanced cell adhesion, spreading and proliferation, and it also inhibited the bacterial growth, showing improved biological and antibacterial properties. Although, with the increased CS amount, the coverage of HA coating would be enlarged, resulting in depressed biological property, however, the antibacterial property of the composite coating was enhanced, and the cytotoxicity about CS was not detected in this work. In conclusion, the HA/CS coating has promising application in orthopedics, dentistry and other biomedical devices.


2019 ◽  
Vol 69 (12) ◽  
pp. 3400-3405
Author(s):  
Mariana Mateescu ◽  
Sanda Maria Doncea ◽  
Iuliana Raut ◽  
Cristina Lavinia Nistor ◽  
Ioneta Codrina Bujanca

The hydroxyapatite (HA) nano and microparticles were synthesized by wet-chemical precipitation in order to use them as drug carriers for biomedical applications. Scanning Electron Microscopy (SEM), Dynamic Light Scattering (DLS) and Fourier Transform Infrared Spectroscopy (FTIR) were performed to assess their size, external morphology and chemical composition. The properties of HA particles as drug carriers for antibiotics delivery were evaluated with doxycycline and chloramphenicol. The amount of drug loading and release was determined by UV-Visible spectrophotometry. The antibacterial properties of loaded HA particles were evaluated using gram-positive Bacillus subtilis bacteria and gram-negative Pseudomonas aeruginosa bacteria. The synthesized particles of HA exhibit a high adsorption capacity (around 99%) and good controlled release properties for doxycycline. The adsorption of chloramphenicol on HA was extremely low (about 2%). According to the results, the compatibility between the drug and substrate is an important factor in the absorption process, and the hydroxyapatite is a very promising carrier for controlled release of antibiotics.


2022 ◽  
Vol 306 ◽  
pp. 130875
Author(s):  
Yixiang Yuan ◽  
Ruidi Luo ◽  
Junkui Ren ◽  
Lei Zhang ◽  
Yehua Jiang ◽  
...  

Antibiotics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 716
Author(s):  
Masaya Shimabukuro

Titanium (Ti) and its alloys are commonly used in medical devices. However, biomaterial-associated infections such as peri-implantitis and prosthetic joint infections are devastating and threatening complications for patients, dentists, and orthopedists and are easily developed on titanium surfaces. Therefore, this review focuses on the formation of biofilms on implant surfaces, which is the main cause of infections, and one-step micro-arc oxidation (MAO) as a coating technology that can be expected to prevent infections due to the implant. Many researchers have provided sufficient data to prove the efficacy of MAO for preventing the initial stages of biofilm formation on implant surfaces. Silver (Ag), copper (Cu), and zinc (Zn) are well used and are incorporated into the Ti surface by MAO. In this review, the antibacterial properties, cytotoxicity, and durability of these elements on the Ti surface incorporated by one-step MAO will be summarized. This review is aimed at enhancing the importance of the quantitative control of Ag, Cu, and Zn for their use in implant surfaces and the significance of the biodegradation behavior of these elements for the development of antibacterial properties.


2011 ◽  
Vol 239-242 ◽  
pp. 2220-2224
Author(s):  
Zhi Li ◽  
Jin Yong Xu ◽  
Ya Juan Liu ◽  
Jing Chen ◽  
Cheng Gao

Antibacterial properties of compound coatings by Micro-arc oxidation and electroless silver plating were reached. Effects of main salt, reducing agent, complexing agent and solution pH on plating rate and solution stability were discussed. The surface morphology and antibacterial properties of compound coatings were analyzed. Bonding strength between compound coatings was tested by tensile peeling method. The results show that compound coatings have good antibacterial effects, the average bonding strength of compound coatings is higher than 22.6 MPa, and compound coatings are firmly bonded.


2014 ◽  
Vol 292 ◽  
pp. 944-947 ◽  
Author(s):  
Xiaohong Yao ◽  
Xiangyu Zhang ◽  
Haibo Wu ◽  
Linhai Tian ◽  
Yong Ma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document