Natural variation of ascospore and conidial germination by Fusarium verticillioides and other Fusarium species

2006 ◽  
Vol 110 (2) ◽  
pp. 211-219 ◽  
Author(s):  
Anthony E. Glenn
2018 ◽  
Vol 7 (1) ◽  
pp. 31-49
Author(s):  
Narges Atabaki ◽  
Vahid Rahjoo ◽  
Mohamed M. Hanafi ◽  
Rambod Abiri ◽  
Hamidreza Z. Zadeh ◽  
...  

Fusarium verticillioides and Fusarium proliferatum cause a wide range of maize diseases.  These fungi produce dangerous mycotoxins, such as fumonisin B1, which are important threats to humans and animals. Given this predicament, the present study aimed to identify the fungi both molecular-morphologically and also investigate the pathogenicity variation and mating type of 41 Fusarium strains in maize (Zea mays L.) samples with sifting their fumonisin contents.  Furthermore, species-specific primers for the molecular identification of distinct strains amplified 2 fragments of 578 and 800 bp in Fusarium verticillioides, while a single 585 bp band was amplified in Fusarium proliferatum.  Accordingly, 24 isolates out of 41 were identified as F. verticillioides, and 13 isolates were identified as F. proliferatum.  The fumonisin-producing and non-producing Fusarium strains were identified using the VERTF-1/VERTF-2 primers.  A total of 24 isolates of F. verticillioides were positively scored based on the amplification of a single 400 bp fragment.  The highest and lowest fumonisin content, as measured using an enzyme-linked immunosorbent assay (ELISA), belonged to strains MS1 and MG3, respectively, and ranged from 960-12673 and 4.07-23 ppm, respectively.  Additionally, the mating type test showed that the sexual form of the studied Fusarium species could possibly belong to the A and D mating populations.  In vivo and in vitro pathogenicity tests revealed a high susceptibility.


2018 ◽  
Vol 19 (2) ◽  
pp. 571-576
Author(s):  
SHUBHRANSU NAYAK ◽  
URMILA DHUA ◽  
APURBA CHHOTARAY ◽  
SOMA SAMANTA ◽  
CHANDAN SENGUPTA

Nayak S, Dhua U, Chhotaray A, Samanta S, Sengupta C. 2018. Short Communication: Genetic diversity of fumonisin producing Fusarium isolates from rice using PCR-RFLP of IGS-rDNA region. Biodiversitas 19: 571-576. Fusarium verticillioides (Sacc.) and related species produce carcinogenic mycotoxin known as Fumonisins in several agricultural crops including rice. However, this principal food crop has been infected by genetically diverse Fusarium species. Odisha belongs to the coastal part of India and many popular rice varieties are in the food chain in this region. Many Fusarium species producing fumonisins have been found to be associated with these rice varieties. Hence, the genetic diversity of twenty eight Fumonisin producers and non producers of Fusarium pathogens in this region was carried out in the current study. The IGS regions of 28 Fusarium isolates (both fumonisin producing and non producing) were amplified and the PCR products were restriction digested with ECoRI and HhaI. The digested products were separated on PAGE and bands were visualized by Silver Nitrate Staining. The 28 isolates could be separated into 14 IGS haplotypes. The lowest similarity was detected to be of 33% between F40 and F47. A group containing 14 isolates represented the biggest haplotypes. The isolates in which the FUM gene had not been detected (fumonisin non producer) were in a separate group having 90% similarity with each other and placed consistently in separate branch from others. Presence of unique band for this group was observed at 1650bp where as absence of specific bands was observed at 380bp and 300bp. The result of this study indicated a high degree of genetic variation among 28 Fusarium isolates. PCR RFLP of IGS region was also found to be useful for diversity study in Fusarium.


2019 ◽  
Vol 7 (1) ◽  
pp. 26 ◽  
Author(s):  
Natalia Witaszak ◽  
Łukasz Stępień ◽  
Jan Bocianowski ◽  
Agnieszka Waśkiewicz

Veterinary diets are intended for diseased animals and may contain cereal grains, mainly maize and/or wheat. These, in turn, are often infected with pathogens of the Fusarium genus, which are able to produce numerous harmful mycotoxins. Forty-two samples of veterinary diets for dogs and cats were analyzed for the presence of Fusarium species and mycotoxins. Species were identified using molecular methods and the ergosterol and mycotoxins (fumonisin B1, deoxynivalenol, nivalenol and zearalenone) were quantified using HPLC methods. Two Fusarium species were identified: Fusarium proliferatum and Fusarium verticillioides. The highest concentrations of fumonisin B1, deoxynivalenol, nivalenol and zearalenone were 74.83, 2318.05, 190.90, and 45.84 ng/g, respectively. Only 9.5% of the samples were free from Fusarium mycotoxins. The acceptable limits of mycotoxin content in animal feed, specified by the EU regulations, were not exceeded in any of the samples tested. The mean mycotoxin content in veterinary diets for cats was lower than for dogs. Thus, it is recommended that veterinary diets are examined, since the mycotoxin contamination pose additional risk to animal health. The knowledge on Fusarium occurrence in veterinary diets is scarce and as far as we are aware this is the first report concerning the occurrence of Fusarium spp. and their important secondary metabolites—mycotoxins—in different types of veterinary diets for companion animals in Poland.


Toxins ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 320 ◽  
Author(s):  
Lina Li ◽  
Qing Qu ◽  
Zhiyan Cao ◽  
Zhengyu Guo ◽  
Hui Jia ◽  
...  

Fusarium diseases, including corn root rot, sheath rot, stalk rot, and ear rot are frequently occurring in maize producing areas of China. Fusarium stalk rot and ear rot are the most serious diseases and often occur at the same time, but it is unclear whether there is a correlation between Fusarium composition and disease occurrence. This study was conducted to clarify the relationship between the two diseases. A total of 49 corn stalk rot samples were collected from 15 regions of eight provinces in China from 2016 to 2018. The pathogens were isolated and identified separately from stalks, ear stems, and kernels. The contents of the fumonisins (FB1 and FB2) were detected in kernels. The results showed that the main Fusarium species were found in corn kernels, ear stems and stalks at the same time. The results showed that 1201 strains of Fusarium verticillioides, 668 strains of Fusarium oxysporum, 574 strains of Fusarium graminearum species complex (FGSC), 318 strains of Fusarium equiseti, 95 strains of Fusarium proliferatum, and 40 strains of Fusarium subglutinans were isolated from 1470 corn kernels, 245 ear stems, and 1225 stalks randomly selected from 49 samples. The contamination rate of fumonisins in the 49 samples was 57.1% with an average content of 1.9 μg/g, of which four samples exhibited higher levels as set by the European Commission (4.0 μg/g). These results provide a certain association between stalk rot and ear rot and lay a foundation to study the relationships among Fusarium maize diseases.


2004 ◽  
Vol 67 (6) ◽  
pp. 1278-1283 ◽  
Author(s):  
BELÉN PATIÑO ◽  
SALVADOR MIRETE ◽  
M. TERESA GONZÁLEZ-JAÉN ◽  
GIUSEPPINA MULÉ ◽  
M. TERESA RODRÍGUEZ ◽  
...  

Fusarium verticillioides is considered to be the main source of fumonisins, a group of toxins that contaminate commodities and result in chronic and acute diseases affecting humans and animals. The detection and control of this species is crucial to prevent fumonisins from entering the food chain. The objective of the present research was to develop a specific, sensitive, and robust PCR assay to detect F. verticillioides strains using two pairs of specific primers for F. verticillioides, which have been designed on the basis of the intergenic spacer region of the rDNA units. The first pair of primers was F. verticillioides species specific, whereas the second pair of primers detected fumonisin-producing F. verticillioides strains. This second pair of primers allowed for the discrimination between the major group of F. verticillioides strains, fumonisin-producing strains that are mainly associated with crops, and a minor group of strains, non–fumonisin-producing strains that are associated with bananas. Fifty-four strains of F. verticillioides from different geographical regions and hosts were tested using both sets of primers. Sixteen additional Fusarium species were examined. The specificity of the primer sequences provides the basis for a simple, rapid, accurate, and sensitive detection and identification method of this fungal species that represents a risk for human and animal health.


2020 ◽  
Vol 110 (4) ◽  
pp. 790-794 ◽  
Author(s):  
Weichao Ren ◽  
Na Liu ◽  
Yiping Hou ◽  
Baohua Li ◽  
Mingguo Zhou ◽  
...  

Fusarium verticillioides is a major pathogen of maize that causes ear rot and produces mycotoxins. Phenamacril is a novel cyanoacrylate fungicide that exhibits favorable activity against Fusarium species. In this study, the phenamacril-resistant mutants of F. verticillioides were obtained by ultraviolet mutagenesis. Single point mutations of S73L or E276K in the myosin-1 FvMyo1 were proven to be responsible for the high-level resistance of F. verticillioides to phenamacril. Phenamacril had a significant impact on the localization of the wild-type FvMyo1 (FvMyo1WT-green fluorescent protein [GFP]), but not on the mutated FvMyo1 (FvMyo1S73L-GFP and FvMyo1E276K-GFP) at the hyphal tips. Molecular docking analysis suggested that mutation (S73L or E276K) in FvMyo1 altered the binding mode and decreased the binding affinity between phenamacril and myosin-1. There was no significant fitness penalty in mycelial growth, conidiation, and virulence of F. verticillioides associated with resistance to phenamacril. The results will enhance our understanding of the resistance mechanism of F. verticillioides to phenamacril and provide new reference data for the management of maize ear rot.


Author(s):  
Vahid Rahdzu ◽  
Marjam Parcamijan ◽  
Tagi Feizbas ◽  
Majid Zamani

Fusarium verticillioides is one of the most prevalent Fusarium species on maize and sorghum, causing Fusarium ear rot and sorghum grain mold in warm and humid regions of Iran. The pathogen produces potent mycotoxins known as fumonisins. In order to determine mycotoxin (fumonisins) production on different maize and sorghum genotypes, a field trial was carried out based on a randomized complete block design with 10 treatments and three replications for each crop at Gorgan station in 2010. The ears of corn plants were inoculated by spore suspension of the mixture of some virulent F. verticillioides isolates using an ear inoculation method (Nail Punch). The sorghum panicles were also inoculated by spraying of spore suspension isolates at f lowering stage. All infected kernels were evaluated by ELISA kits (AgraQuant Fumonisin Kit; Romer Labs, Austria) for their total fumonisins production at the physiological maturing stage. All genotypes showed statistically significant difference in their fumonisin production in Gorgan. The results of fumonisins analysis obtained from ELISA test showed that lines 1 (Resistant) and 3 (Susceptible) with 2.4 ppm and 13.7 ppm had the least and highest amount of total fumonisins respectively among all maize genotypes. Also among all sorghum genotypes, genotypes 10 and 6 with 0.2 ppm and 4.8 ppm had the least and the highest amount of total fumonisins respectively. The results of this experiment demonstrated that fumonisin production level in maize kernels (maybe as maize kernels are the main host of this fungus) was significantly higher than sorghum kernels in Gorgan region.


2020 ◽  
Vol 13 (2) ◽  
pp. 201-212 ◽  
Author(s):  
F. Dong ◽  
Y.J. Xing ◽  
Y.W. Lee ◽  
M.P. Mokoena ◽  
A.O. Olaniran ◽  
...  

In 2017, 236 rice samples were collected from 42 counties in Jiangsu province, China, and analysed for Fusarium mycotoxins. Mycotoxin analyses showed that deoxynivalenol (DON), 3-acetyldeoxynivalenol (3-ADON), 15-acetyldeoxynivalenol (15-ADON), nivalenol (NIV), fusarenone X (FUS-X), zearalenone (ZEA), fumonisins (including FB1, FB2, and FB3), and beauvericin (BEA) were present in unhusked rice samples. Regional differences in mycotoxin contamination of unhusked rice were attributed to differences in precipitation during rice anthesis and agricultural practices among the three study regions. Importantly, the mean concentrations of DON, NIV, ZEA, and fumonisins in white rice were significantly lower than those in unhusked rice, and the relative proportion of the toxins in rice by-products exceeded 84%. Fusarium isolates were then obtained from the unhusked rice samples; Fusarium asiaticum was the most common, followed by Fusarium fujikuroi, Fusarium proliferatum, Fusarium verticillioides, and Fusarium commune. Genotype and chemical analyses of mycotoxins showed that most F. asiaticum isolates (71%) were 3-ADON chemotypes; the remainder were NIV producers. All of the F. proliferatum and F. verticillioides isolates, and most of the F. fujikuroi isolates produce fumonisins, and most of the three species coproduced BEA. The present study is the first to evaluate Fusarium mycotoxins and toxigenic Fusarium species from rice freshly harvested in Jiangsu province, China. The results of this study improve our understanding the population dynamics of Fusarium species in rice and the development of effective control measures.


Toxins ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 224 ◽  
Author(s):  
Karolina Gromadzka ◽  
Lidia Błaszczyk ◽  
Jerzy Chełkowski ◽  
Agnieszka Waśkiewicz

Maize has become one of the most important crops for food and feed production—both as a silage and crop residue worldwide. The present study aimed to identify the co-occurrence of Fusarium subglutinans, Fusarium verticillioides, Trichoderma atroviride, Sarocladium zeae, and Lecanicillium lecanii on maize ear rot. Further, the accumulation of mycotoxins as secondary metabolites of Fusarium spp. in maize ear samples was also analyzed. Maize ear samples were collected between 2014 and 2017 from two main maize growing areas in Poland (Greater Poland and Silesia region). A significant difference was found in the frequency of two main Fusarium spp. that infect maize ears, namely F. subglutinans and F. verticillioides. In addition to Fusarium spp. T. atroviride, S. zeae, and L. lecanii were also identified. T. atroviride species was found in 14% of maize samples examined between 2014 and 2017, particularly with a high percentage of Trichoderma spp. recorded in 2014, i.e., in 31% of samples. However, mycotoxin content (beauvericin and fumonisins) varied, depending on both the location and year of sampling. The interaction of fungi and insects inhabiting maize ear and kernel is very complex and not yet elucidated. Therefore, further research is required in this area.


2001 ◽  
Vol 67 (7) ◽  
pp. 2973-2981 ◽  
Author(s):  
A. E. Glenn ◽  
D. M. Hinton ◽  
I. E. Yates ◽  
C. W. Bacon

ABSTRACT The preformed antimicrobial compounds produced by maize, 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3-one and its desmethoxy derivative 2,4-dihydroxy-2H-1,4-benzoxazin-3-one, are highly reactive benzoxazinoids that quickly degrade to the antimicrobials 6-methoxy-2-benzoxazolinone (MBOA) and 2-benzoxazolinone (BOA), respectively. Fusarium verticillioides (= F. moniliforme) is highly tolerant to MBOA and BOA and can actively transform these compounds to nontoxic metabolites. Eleven of 29 Fusarium species had some level of tolerance to MBOA and BOA; the most tolerant, in decreasing order, were F. verticillioides, F. subglutinans, F. cerealis (= F. crookwellense), and F. graminearum. The difference in tolerance among species was due to their ability to detoxify the antimicrobials. The limited number of species having tolerance suggested the potential utility of these compounds as biologically active agents for inclusion within a semiselective isolation medium. By replacing the pentachloronitrobenzene in Nash-Snyder medium with 1.0 mg of BOA per ml, we developed a medium that resulted in superior frequencies of isolation of F. verticillioides from corn while effectively suppressing competing fungi. Since the BOA medium provided consistent, quantitative results with reduced in vitro and taxonomic efforts, it should prove useful for surveys of F. verticillioides infection in field samples.


Sign in / Sign up

Export Citation Format

Share Document