Folic acid-functionalized ultra-small nanographene oxide for multimodal nuclide/optical molecular imaging of triple negative breast cancer

2016 ◽  
Vol 12 (2) ◽  
pp. 507
Author(s):  
Ming-Wei Wang ◽  
Peihong You ◽  
Tianye Cao ◽  
Yingjian Zhang
2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Hanyi Fang ◽  
Mengting Li ◽  
Qingyao Liu ◽  
Yongkang Gai ◽  
Lujie Yuan ◽  
...  

AbstractTriple-negative breast cancer (TNBC) is a subtype of breast cancer in which the estrogen receptor and progesterone receptor are not expressed, and human epidermal growth factor receptor 2 is not amplified or overexpressed either, which make the clinical diagnosis and treatment very challenging. Molecular imaging can provide an effective way to diagnose TNBC. Upconversion nanoparticles (UCNPs), are a promising new generation of molecular imaging probes. However, UCNPs still need to be improved for tumor-targeting ability and biocompatibility. This study describes a novel probe based on cancer cell membrane-coated upconversion nanoparticles (CCm-UCNPs), owing to the low immunogenicity and homologous-targeting ability of cancer cell membranes, and modified multifunctional UCNPs. This probe exhibits excellent performance in breast cancer molecular classification and TNBC diagnosis through UCL/MRI/PET tri-modality imaging in vivo. By using this probe, MDA-MB-231 was successfully differentiated between MCF-7 tumor models in vivo. Based on the tumor imaging and molecular classification results, the probe is also expected to be modified for drug delivery in the future, contributing to the treatment of TNBC. The combination of nanoparticles with biomimetic cell membranes has the potential for multiple clinical applications.


2019 ◽  
Vol 43 (1) ◽  
pp. 217-229 ◽  
Author(s):  
Dipranjan Laha ◽  
Kunal Pal ◽  
Angshuman Ray Chowdhuri ◽  
Pravat Kumar Parida ◽  
Sumanta Kumar Sahu ◽  
...  

Curcumin has shown therapeutic activity against triple-negative breast cancer (TNBC) cells, but it shows low efficacy and low bioavailability when administered as a free drug.


2020 ◽  
Author(s):  
Sophia Antimisiaris ◽  
Helen Lamprou ◽  
Spyridon Mourtas ◽  
Maria Mantzari ◽  
Antonia Maraziotis ◽  
...  

Author(s):  
Alexandria DeCarlo ◽  
Cecile Malardier-Jugroot ◽  
Myron R Szewczuk

The development of a highly specific drug delivery system (DDS) for anti-cancer therapeutics is an area of intense research focus. Chemical engineering of a “smart” DDS to specifically target tumor cells has gained interest, designed for safer, more efficient, and effective use of chemotherapeutics for the treatment of cancer. However, the selective targeting and choosing the critical cancer surface biomarker are essential for targeted treatments to work. The folic acid receptor alpha (FRalpha) has gained popularity as a potential target in triple-negative breast cancer (TNBC). We have previously reported on a functionalized folic acid (FA)-conjugated amphiphilic alternating copolymer poly(styrene-alt-maleic anhydride) (FA-DABA-SMA) via a biodegradable linker 2,4-diaminobutyric acid (DABA) that has the essential features for efficient “smart” DDS. This biocompatible DDS self-assembles in a pH-dependent manner, providing stimuli-responsive, active targeting, extended-release of hydrophobic chemotherapeutic agents, and can effectively penetrate the inner core of 3-dimensional cancer spheroid models. The empty FA-DABA-SMA decreased spheroid volume, revealing a previously unknown mechanism of action. Upon further investigation, a size- and shape-dependent interaction FA-DABA-SMA with FR reduced the expression of p53, the product of the highly mutated TP53 gene, and additional oncogenic c-Myc and STAT3 proteins. Here, we investigated how this copolymer influences FR behavior and disrupting the receptor’s functions. Results indicate that FA-DABA-SMA increases FR expression levels in breast MDA MB-231 cancer cells and disrupting FR signaling by the reduction in HES1 and NOTCH1 protein expression levels. Also, FA-DABA-SMA induces apoptosis and further causes a change in the morphology of the MDA MB-231 cells, as well as significantly reduces their ability to migrate in a Scratch wound assay. Collectively, these findings provide a novel insight into the functionalized FA-DABA-SMA copolymer. The 350 kDa and 20 kDa copolymers actively target FRα to initialize internationalization. However, only the large size and sheet-shaped 350 kDa copolymers disrupt FRα signaling. The significance of these novel findings reveals the intracellular activity of the copolymer that is critically dependent on the size and structural shape. This report offers novel therapeutic insight into a dual mechanism of FA-DABA-SMA copolymer for its therapeutic potential for the treatment of cancer.


Biochimie ◽  
2020 ◽  
Vol 173 ◽  
pp. 114-122 ◽  
Author(s):  
Dieuwertje E. Kok ◽  
Ciara H. O’Flanagan ◽  
Michael F. Coleman ◽  
Zahra Ashkavand ◽  
Stephen D. Hursting ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document