scholarly journals High sensitivity determination of iridium contents in ultra-basic rocks by INAA with coincidence gamma-ray detection

Author(s):  
Mitsuru Ebihara ◽  
Naoki Shirai ◽  
Jin Kuwayama ◽  
Yosuke Toh
2019 ◽  
Vol 85 (2) ◽  
pp. 12-16
Author(s):  
I. V. Saunina ◽  
E. N. Gribanov ◽  
E. R. Oskotskaya

The sorption of Hg (II), Cd (II), and As (III) by natural aluminosilicate is studied. It is shown that the mineral absorbs those toxicants in a rather wide pH range, quantitative extraction of analytes being achieved in a neutral or close to neutral medium (pH values range within 7.0 - 8.0; 6.3 - 7.5; 7.4 - 8.5 for Hg (II), As (III), and Cd (II), respectively). The effect of the time of phase contact on the degree of extraction of elements is shown. The sorption capacity of the mineral in optimal conditions of the medium acidity (0.06 mmol/g for mercury, 0.31 mmol/g for cadmium, and 0.52 mmol/g for arsenic) is determined. The distribution coefficients attain values of aboutnX 103-nX 104. A new combined method for determination of Hg (II), Cd (II), and As (III) in natural and waste water is developed and tested. The method consists in a preliminary group sorption concentration of the analytes by aluminosilicate, desorption of the analytes from the surface of the mineral and their subsequent atomic absorption determination. The correctness of the method is verified in analysis of spiked samples. The method is easy to use and exhibits high sensitivity, reproducibility and accuracy of analyte determination. The relative standard deviation does not exceed 0.13. Economic availability and possibility of using domestic sorption materials are the important advantages of the proposed procedure which can be used in the practice of laboratories monitoring the quality and safety of environmental objects.


2020 ◽  
Vol 23 (10) ◽  
pp. 1010-1022
Author(s):  
Emrah Dural

Aim and scope: Due to the serious toxicological risks and their widespread use, quantitative determination of phthalates in cosmetic products have importance for public health. The aim of this study was to develop a validated simple, rapid and reliable high-performance liquid chromatography (HPLC) method for the determination of phthalates which are; dimethyl phthalate (DMP), diethyl phthalate (DEP), benzyl butyl phthalate (BBP), di-n-butyl phthalate (DBP), di(2- ethylhexyl) phthalate (DEHP), in cosmetic products and to investigate these phthalate (PHT) levels in 48 cosmetic products marketing in Sivas, Turkey. Materials and Methods: Separation was achieved by a reverse-phase ACE-5 C18 column (4.6 x 250 mm, 5.0 μm). As the mobile phase, 5 mM KH2PO4 and acetonitrile were used gradiently at 1.5 ml min-1. All PHT esters were detected at 230 nm and the run time was taking 21 minutes. Results: This method showed the high sensitivity value the limit of quantification (LOQ) values for which are below 0.64 μg mL-1 of all phthalates. Method linearity was ≥0.999 (r2). Accuracy and precision values of all phthalates were calculated between (-6.5) and 6.6 (RE%) and ≤6.2 (RSD%), respectively. Average recovery was between 94.8% and 99.6%. Forty-eight samples used for both babies and adults were successfully analyzed by the developed method. Results have shown that, DMP (340.7 μg mL-1 ±323.7), DEP (1852.1 μg mL-1 ± 2192.0), and DBP (691.3 μg mL-1 ± 1378.5) were used highly in nail polish, fragrance and cream products, respectively. Conclusion: Phthalate esters, which are mostly detected in the content of fragrance, cream and nail polish products and our research in general, are DEP (1852.1 μg mL-1 ± 2192.0), DBP (691.3 μg mL-1 ± 1378.5) and DMP (340.7 μg mL-1 ±323.7), respectively. Phthalates were found in the content of all 48 cosmetic products examined, and the most detected phthalates in general average were DEP (581.7 μg mL-1 + 1405.2) with a rate of 79.2%. The unexpectedly high phthalate content in the examined cosmetic products revealed a great risk of these products on human health. The developed method is a simple, sensitive, reliable and economical alternative for the determination of phthalates in the content of cosmetic products, it can be used to identify phthalate esters in different products after some modifications.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1768
Author(s):  
Miroslav Rievaj ◽  
Eva Culková ◽  
Damiána Šandorová ◽  
Zuzana Lukáčová-Chomisteková ◽  
Renata Bellová ◽  
...  

This short review deals with the properties and significance of the determination of selenium, which is in trace amounts an essential element for animals and humans, but toxic at high concentrations. It may cause oxidative stress in cells, which leads to the chronic disease called selenosis. Several analytical techniques have been developed for its detection, but electroanalytical methods are advantageous due to simple sample preparation, speed of analysis and high sensitivity of measurements, especially in the case of stripping voltammetry very low detection limits even in picomoles per liter can be reached. A variety of working electrodes based on mercury, carbon, silver, platinum and gold materials were applied to the analysis of selenium in various samples. Only selenium in oxidation state + IV is electroactive therefore the most of voltammetric determinations are devoted to it. However, it is possible to detect also other forms of selenium by indirect electrochemistry approach.


Author(s):  
And Demir ◽  
Adem Aydın ◽  
Atilla Büyükgebiz ◽  
Ulf-Håkan Stenman ◽  
Matti Hero

Abstract Objectives Determination of LH in urine has proved to be a reliable method for evaluation of pubertal development. The human LH assay based on time-resolved immunofluorometric (IFMA) technology (AutoDELFIA, PerkinElmer, Wallac) has been found to be suitable for this purpose thanks to its high sensitivity but other assays have not been evaluated. We have analyzed our data obtained by another potentially sensitive detection technique, enhanced luminometric assay (LIA) with the objective of finding a viable alternative to IFMA since these may not be available in the future. Methods LIA was used to measure LH and FSH in serum and urine samples from 100 healthy subjects of each Tanner stage and both genders, whose pubertal development has been determined. Results Urinary gonodotropin concentrations measured by LIA correlated well with Tanner stage [(r=0.93 for girls, r=0.81 for boys; p<0.01 for LH) and (r=0.81 for girls, r=0.73 for boys; p<0.01 for FSH)]. LIA determinations revealed the increase in U-LH concentrations during the transition from Tanner stage 1–2 in both girls and boys (p<0.001), whereas U-FSH and S-LH were able to detect the increase from Tanner stage 1–2 only in boys or girls, respectively (both p<0.001). Conclusions Measurement of urinary gonadotropin concentrations by LIA may be useful for the evaluation of overall pubertal development and also in the detection of transition from prepuberty to puberty.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3575
Author(s):  
Shenggang Wang ◽  
Yue Huang ◽  
Xiangming Guan

Thiols play vital and irreplaceable roles in the biological system. Abnormality of thiol levels has been linked with various diseases and biological disorders. Thiols are known to distribute unevenly and change dynamically in the biological system. Methods that can determine thiols’ concentration and distribution in live cells are in high demand. In the last two decades, fluorescent probes have emerged as a powerful tool for achieving that goal for the simplicity, high sensitivity, and capability of visualizing the analytes in live cells in a non-invasive way. They also enable the determination of intracellular distribution and dynamitic movement of thiols in the intact native environments. This review focuses on some of the major strategies/mechanisms being used for detecting GSH, Cys/Hcy, and other thiols in live cells via fluorescent probes, and how they are applied at the cellular and subcellular levels. The sensing mechanisms (for GSH and Cys/Hcy) and bio-applications of the probes are illustrated followed by a summary of probes for selectively detecting cellular and subcellular thiols.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 813
Author(s):  
Magdalena Świądro ◽  
Paweł Stelmaszczyk ◽  
Irena Lenart ◽  
Renata Wietecha-Posłuszny

The purpose of this study was to develop and validate a high-sensitivity methodology for identifying one of the most used drugs—ketamine. Ketamine is used medicinally to treat depression, alcoholism, and heroin addiction. Moreover, ketamine is the main ingredient used in so-called “date-rape” pills (DRP). This study presents a novel methodology for the simultaneous determination of ketamine based on the Dried Blood Spot (DBS) method, in combination with capillary electrophoresis coupled with a mass spectrometer (CE-TOF-MS). Then, 6-mm circles were punched out from DBS collected on Whatman DMPK-C paper and extracted using microwave-assisted extraction (MAE). The assay was linear in the range of 25–300 ng/mL. Values of limits of detection (LOD = 6.0 ng/mL) and quantification (LOQ = 19.8 ng/mL) were determined based on the signal to noise ratio. Intra-day precision at each determined concentration level was in the range of 6.1–11.1%, and inter-day between 7.9–13.1%. The obtained precision was under 15.0% (for medium and high concentrations) and lower than 20.0% (for low concentrations), which are in accordance with acceptance criteria. Therefore, the DBS/MAE/CE-TOF-MS method was successfully checked for analysis of ketamine in matrices other than blood, i.e., rose wine and orange juice. Moreover, it is possible to identify ketamine in the presence of flunitrazepam, which is the other most popular ingredient used in DRP. Based on this information, the selectivity of the proposed methodology for identifying ketamine in the presence of other components of rape pills was checked.


1979 ◽  
Vol 47 (6) ◽  
pp. 1228-1233 ◽  
Author(s):  
D. S. Simon ◽  
J. F. Murray ◽  
N. C. Staub

We evaluated the attenuation of the 122 keV gamma ray of cobalt-57 across the thorax of anesthetized dogs as a method for following the time course of lung water changes in acute pulmonary edema induced by either increased microvascular permeability or increased microvascular hydrostatic pressure. The gamma rays traversed the thorax centered on the seventh rib laterally where the lung mass in the beam path was greatest. Calibration measurements in isolated lung lobes demonstrated the high sensitivity and inherent accuracy of the method over a wide range of lung water contents. In control dogs reproducibility averaged +/-3%. Increased permeability edema led to large rapid increases in the transthoracic gamma ray attenuation (TGA), while increased pressure caused an immediate, modest increase in TGA (vascular congestion) followed by a slow further increase over 2 h. There was a fairly good correlation between the increase in extravascular lung water and the change in TGA. The method is simple, safe, and noninvasive and appears to be useful for following the time course of lung water accumulation in generalized lung edema in anesthetized animals.


Sign in / Sign up

Export Citation Format

Share Document