Drug repurposing: Old drugs, new tricks to fast track drug development for the brain

2019 ◽  
Vol 147 ◽  
pp. 1-3 ◽  
Author(s):  
F. Gasparini ◽  
T. Di Paolo
Author(s):  
Tanay Dalvi ◽  
Bhaskar Dewangan ◽  
Rudradip Das ◽  
Jyoti Rani ◽  
Suchita Dattatray Shinde ◽  
...  

: The most common reason behind dementia is Alzheimer’s disease (AD) and it is predicted to be the third lifethreatening disease apart from stroke and cancer for the geriatric population. Till now only four drugs are available in the market for symptomatic relief. The complex nature of disease pathophysiology and lack of concrete evidences of molecular targets are the major hurdles for developing new drug to treat AD. The the rate of attrition of many advanced drugs at clinical stages, makes the de novo discovery process very expensive. Alternatively, Drug Repurposing (DR) is an attractive tool to develop drugs for AD in a less tedious and economic way. Therefore, continuous efforts are being made to develop a new drug for AD by repursing old drugs through screening and data mining. For example, the survey in the drug pipeline for Phase III clinical trials (till February 2019) which has 27 candidates, and around half of the number are drugs which have already been approved for other indications. Although in the past the drug repurposing process for AD has been reviewed in the context of disease areas, molecular targets, there is no systematic review of repurposed drugs for AD from the recent drug development pipeline (2019-2020). In this manuscript, we are reviewing the clinical candidates for AD with emphasis on their development history including molecular targets and the relevance of the target for AD.


2021 ◽  
Vol 14 (3) ◽  
pp. 280
Author(s):  
Rita Rebelo ◽  
Bárbara Polónia ◽  
Lúcio Lara Santos ◽  
M. Helena Vasconcelos ◽  
Cristina P. R. Xavier

Pancreatic ductal adenocarcinoma (PDAC) is considered one of the deadliest tumors worldwide. The diagnosis is often possible only in the latter stages of the disease, with patients already presenting an advanced or metastatic tumor. It is also one of the cancers with poorest prognosis, presenting a five-year survival rate of around 5%. Treatment of PDAC is still a major challenge, with cytotoxic chemotherapy remaining the basis of systemic therapy. However, no major advances have been made recently, and therapeutic options are limited and highly toxic. Thus, novel therapeutic options are urgently needed. Drug repurposing is a strategy for the development of novel treatments using approved or investigational drugs outside the scope of the original clinical indication. Since repurposed drugs have already completed several stages of the drug development process, a broad range of data is already available. Thus, when compared with de novo drug development, drug repurposing is time-efficient, inexpensive and has less risk of failure in future clinical trials. Several repurposing candidates have been investigated in the past years for the treatment of PDAC, as single agents or in combination with conventional chemotherapy. This review gives an overview of the main drugs that have been investigated as repurposing candidates, for the potential treatment of PDAC, in preclinical studies and clinical trials.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tarun Jairaj Narwani ◽  
Narayanaswamy Srinivasan ◽  
Sohini Chakraborti

AbstractComputational methods accelerate the drug repurposing pipelines that are a quicker and cost-effective alternative to discovering new molecules. However, there is a paucity of web servers to conduct fast, focussed, and customized investigations for identifying new uses of old drugs. We present the NOD web server, which has the mentioned characteristics. NOD uses a sensitive sequence-guided approach to identify close and distant homologs of a protein of interest. NOD then exploits this evolutionary information to suggest potential compounds from the DrugBank database that can be repurposed against the input protein. NOD also allows expansion of the chemical space of the potential candidates through similarity searches. We have validated the performance of NOD against available experimental and/or clinical reports. In 65.6% of the investigated cases in a control study, NOD is able to identify drugs more effectively than the searches made in DrugBank. NOD is freely-available at http://pauling.mbu.iisc.ac.in/NOD/NOD/.


Author(s):  
Philip S. Murphy ◽  
Neel Patel ◽  
Timothy J. McCarthy

Pharmaceutical research and development requires a systematic interrogation of a candidate molecule through clinical studies. To ensure resources are spent on only the most promising molecules, early clinical studies must understand fundamental attributes of the drug candidate, including exposure at the target site, target binding and pharmacological response in disease. Molecular imaging has the potential to quantitatively characterize these properties in small, efficient clinical studies. Specific benefits of molecular imaging in this setting (compared to blood and tissue sampling) include non-invasiveness and the ability to survey the whole body temporally. These methods have been adopted primarily for neuroscience drug development, catalysed by the inability to access the brain compartment by other means. If we believe molecular imaging is a technology platform able to underpin clinical drug development, why is it not adopted further to enable earlier decisions? This article considers current drug development needs, progress towards integration of molecular imaging into studies, current impediments and proposed models to broaden use and increase impact. This article is part of the themed issue ‘Challenges for chemistry in molecular imaging’.


2003 ◽  
Vol 22 (5) ◽  
pp. 665-675 ◽  
Author(s):  
Weichung J. Shih ◽  
Peter Ouyang ◽  
Hui Quan ◽  
Yong Lin ◽  
Bart Michiels ◽  
...  

Author(s):  
Xu Li ◽  
Jinchao Yu ◽  
Zhiming Zhang ◽  
Jing Ren ◽  
Alex E. Peluffo ◽  
...  

The COVID-2019 disease caused by the SARS-CoV-2 virus (aka 2019-nCoV) has raised significant health concerns in China and worldwide. While novel drug discovery and vaccine studies are long, repurposing old drugs against the COVID-2019 epidemic can help identify treatments, with known preclinical, pharmacokinetic, pharmacodynamic, and toxicity profiles, which can rapidly enter Phase 3 or 4 or can be used directly in clinical settings. In this study, we presented a novel network based drug repurposing platform to identify potential drugs for the treatment of COVID-2019. We first analysed the genome sequence of SARS-CoV-2 and identified SARS as the closest disease, based on genome similarity between both causal viruses, followed by MERS and other human coronavirus diseases. Using our AutoSeed pipeline (text mining and database searches), we obtained 34 COVID-2019-related genes. Taking those genes as seeds, we automatically built a molecular network for which our module detection and drug prioritization algorithms identified 24 disease-related human pathways, five modules and finally suggested 78 drugs to repurpose. Following manual filtering based on clinical knowledge, we re-prioritized 30 potential repurposable drugs against COVID-2019 (including pseudoephedrine, andrographolide, chloroquine, abacavir, and thalidomide) . We hope that this data can provide critical insights into SARS-CoV-2 biology and help design rapid clinical trials of treatments against COVID-2019.


2020 ◽  
Vol 60 (1) ◽  
pp. 333-352 ◽  
Author(s):  
Jill M. Pulley ◽  
Jillian P. Rhoads ◽  
Rebecca N. Jerome ◽  
Anup P. Challa ◽  
Kevin B. Erreger ◽  
...  

The promise of drug repurposing is to accelerate the translation of knowledge to treatment of human disease, bypassing common challenges associated with drug development to be more time- and cost-efficient. Repurposing has an increased chance of success due to the previous validation of drug safety and allows for the incorporation of omics. Hypothesis-generating omics processes inform drug repurposing decision-making methods on drug efficacy and toxicity. This review summarizes drug repurposing strategies and methodologies in the context of the following omics fields: genomics, epigenomics, transcriptomics, proteomics, metabolomics, microbiomics, phenomics, pregomics, and personomics. While each omics field has specific strengths and limitations, incorporating omics into the drug repurposing landscape is integral to its success.


2017 ◽  
Vol 15 (3) ◽  
pp. 113-119 ◽  
Author(s):  
Jill M. Pulley ◽  
Jana K. Shirey-Rice ◽  
Robert R. Lavieri ◽  
Rebecca N. Jerome ◽  
Nicole M. Zaleski ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document