Nitric Oxide Acts in the Rat Dorsomedial Hypothalamus to Increase High Fat Food Intake and Glutamate Transmission

Neuroscience ◽  
2020 ◽  
Vol 440 ◽  
pp. 277-289 ◽  
Author(s):  
Emily I. Poole ◽  
Victoria A. Rust ◽  
Karen M. Crosby
1996 ◽  
Vol 33 (5) ◽  
pp. 286-291 ◽  
Author(s):  
Yang-Ho CHOI ◽  
Nanako OHNO ◽  
Jun-ichi OKUMURA ◽  
Mitsuhiro FURUSE
Keyword(s):  

2004 ◽  
Vol 326 (1) ◽  
pp. 45-51 ◽  
Author(s):  
Yi Chen ◽  
Shigenari Hozawa ◽  
Sadaaki Sawamura ◽  
Shinkichi Sato ◽  
Naoto Fukuyama ◽  
...  

2020 ◽  
Vol 11 (4) ◽  
pp. 347-359
Author(s):  
D. Valent ◽  
L. Arroyo ◽  
E. Fàbrega ◽  
M. Font-i-Furnols ◽  
M. Rodríguez-Palmero ◽  
...  

The pig is a valuable animal model to study obesity in humans due to the physiological similarity between humans and pigs in terms of digestive and associated metabolic processes. The dietary use of vegetal protein, probiotics and omega-3 fatty acids is recommended to control weight gain and to fight obesity-associated metabolic disorders. Likewise, there are recent reports on their beneficial effects on brain functions. The hypothalamus is the central part of the brain that regulates food intake by means of the production of food intake-regulatory hypothalamic neuropeptides, as neuropeptide Y (NPY), orexin A and pro-opiomelanocortin (POMC), and neurotransmitters, such as dopamine and serotonin. Other mesolimbic areas, such as the hippocampus, are also involved in the control of food intake. In this study, the effect of a high fat diet (HFD) alone or supplemented with these additives on brain neuropeptides and neurotransmitters was assessed in forty-three young pigs fed for 10 weeks with a control diet (T1), a high fat diet (HFD, T2), and HFD with vegetal protein supplemented with Bifidobacterium breve CECT8242 alone (T3) or in combination with omega-3 fatty acids (T4). A HFD provoked changes in regulatory neuropeptides and 3,4-dihydroxyphenylacetic acid (DOPAC) in the hypothalamus and alterations mostly in the dopaminergic system in the ventral hippocampus. Supplementation of the HFD with B. breve CECT8242, especially in combination with omega-3 fatty acids, was able to partially reverse the effects of HFD. Correlations between productive and neurochemical parameters supported these findings. These results confirm that pigs are an appropriate animal model alternative to rodents for the study of the effects of HFD on weight gain and obesity. Furthermore, they indicate the potential benefits of probiotics and omega-3 fatty acids on brain function.


2020 ◽  
Vol 215 ◽  
pp. 112773 ◽  
Author(s):  
Harish S. Appiakannan ◽  
Melissa L. Rasimowicz ◽  
Christopher B. Harrison ◽  
E. Todd Weber

Hypertension ◽  
2020 ◽  
Vol 76 (Suppl_1) ◽  
Author(s):  
Paramita Pati ◽  
Dingguo Zhang ◽  
Jackson Colson ◽  
Shannon M Bailey ◽  
Karen L Gamble ◽  
...  

Irregular timing of food intake increases hypertension and cardiometabolic disease risk. A chronic high fat diet (HFD) also disrupts circadian rhythms. We hypothesized that active period time restricted feeding (TRF) during the last 2 weeks in mice on a chronic HFD will improve blood pressure rhythm, diurnal variation of circulating plasma factors, and vascular metabolism. Mice (male 8-week old, C57BL/6J) were fed a normal diet (ND; 10% fat) or HFD (45% fat) for 20 weeks ad libitum. For the final 2 weeks, half of the HFD mice were subjected to TRF. Mean arterial pressure (MAP), heart rate (HR), and locomotor activity were assessed by telemetry. TRF significantly increased the active-inactive period difference in MAP and HR in in mice fed a HFD (ΔMAP: ND: 16±0.7 mmHg, HFD: 15±0.8 mmHg, HFD+TRF: 18±0.9 mmHg, n=6-8, p=0.01; ΔHR: ND: 68±5.1 bpm, HFD: 69±6.5 bpm, HFD+TRF: 113±7.9 bpm, n=6-8, p<0.01). Diurnal changes in locomotor activity are not different between groups. At the end of the study, plasma was collected at 4 hour intervals over a 24 hour period (ZT0 at 7AM; ZT12 at 7PM). Circulating levels of liver-derived mediators β-hydroxybutyrate (βHB) and insulin-like growth factor-1 (IGF-1) showed significant differences due to diet but not TRF (βHB, ZT21: ND: 0.16±0.01 mM, HFD: 0.20±0.02 mM, HFD+TRF: 0.19±0.01 mM, n=5-6, p=0.02; IGF-1, ZT5: ND: 232±18 ng/mL, HFD: 292±34 ng/mL , HFD+TRF: 371±14 ng/mL, n=5-6, p<0.01). Plasma leptin was significantly higher in mice on HFD and reduced by TRF at ZT12 (ND: 5.3±1.3 ng/mL, HFD: 22.5±2.9 ng/mL, HFD+TRF: 10.3±3.5ng/mL, n=5-6, p<0.01) and ZT17 (ND: 6.7±1.1 ng/mL, HFD: 32.5±3.0 ng/mL, HFD+TRF: 25.0±1.3 ng/mL, n=5-6, p<0.01). Plasma adiponectin was unchanged between all groups. TRF in HFD mice increased NAD + , important for metabolism, in renal vessels at ZT17 (HFD: 0.10±0.02 pmol/μg; HFD+TRF: 0.19±0.03 pmol/μg; n=5, p=0.03). Aortic NAD + at ZT1 was not affected by TRF in HFD mice (HFD: 1.83±0.35 pmol/μg, HFD+TRF: 1.35±0.35 pmol/μg, n=4, p=0.37). Our results indicate that TRF in mice on HFD increases the active-inactive period difference in MAP and HR and alters plasma metabolites, suggesting the timing of food intake on a chronic HFD improves cardiovascular rhythms with increased renal vascular metabolism and reduced leptin levels.


2000 ◽  
Vol 279 (1) ◽  
pp. R230-R238 ◽  
Author(s):  
Clayton E. Mathews ◽  
Kathie Wickwire ◽  
Wiliam P. Flatt ◽  
Carolyn D. Berdanier

The hypothesis that BHE/Cdb rats with mutations in their mitochondrial genome might accommodate this mutation by changing their food intake patterns was tested. Four experiments were conducted. Experiments 1 and 2examined food intake patterns of BHE/Cdb rats fed a stock diet or BHE/Cdb and Sprague-Dawley rats fed a high-fat diet from weaning. Experiment 3 examined the daily rhythms of respiration and heat production in these rats at 200 days of age. Experiment 4 examined the effects of diet composition on these measurements at 50-day intervals. The Sprague-Dawley rats, regardless of diet, had the typical day-night rhythms of feeding and respiration. In contrast, the BHE/Cdb rats fed the high-fat diet showed normal rhythms initially, but with age, these rhythms were attenuated. The changes in rhythms preceded the development of glucose intolerance.


Sign in / Sign up

Export Citation Format

Share Document