Thermal behavior and fluid dynamics within molten pool during laser inside additive manufacturing of 316L stainless steel coating on inner surface of steel tube

2021 ◽  
Vol 138 ◽  
pp. 106917
Author(s):  
Xinyu Shi ◽  
Dongdong Gu ◽  
Yanze Li ◽  
Donghua Dai ◽  
Qing Ge ◽  
...  
2021 ◽  
pp. 102585
Author(s):  
André Ramalho ◽  
Telmo G. Santos ◽  
Ben Bevans ◽  
Ziyad Smoqi ◽  
Prahalad Rao ◽  
...  

2020 ◽  
Vol 10 (9) ◽  
pp. 3284 ◽  
Author(s):  
Bin Xie ◽  
Jiaxiang Xue ◽  
Xianghui Ren ◽  
Wei Wu ◽  
Zhuangbin Lin

Adopting the cold metal transfer plus pulse (CMT + P) process, 316L stainless steel wire was treated with a single channel multi-layer deposition experiment under different linear energy. The microstructures of different regions on the deposited samples were observed by optical microscope and scanning electron microscope, and the element distribution in the structure was analyzed by energy dispersive spectrometer. The mechanical properties and microhardness were measured by tensile test method and microhardness tester, respectively, and the anisotropy of tensile strength in horizontal and vertical directions were calculated. Finally, the fracture morphology of the tensile samples were observed by SEM. Experiment results showed that when the difference between the actual and the optimal wire feeding speed matching the specific welding speed was too large, this led to an unstable deposition process as well as flow and collapse of weld bead metal, thus seriously deteriorating the appearance of the deposition samples. The results from metallographic micrograph showed that rapid heat dissipation of the substrate caused small grains to generate in the bottom region of deposition samples, then gradually grew up to coarse dendrites along the building direction in the middle and top region caused by the continuous heat accumulation during deposition. Tensile test results showed that with the increase of linear energy, the horizontal and vertical tensile strength of the as-deposited samples decreased. In addition, the higher linear energy would deteriorate the microstructure of as-deposited parts, including significantly increasing the tendency of oxidation and material stripping. The microhardness values of the bottom, middle and top regions of the samples fluctuated along the centerline of the cross-section, and the values showed a trend of decreasing first and then rising along the building direction. Meanwhile, the yield strength and tensile strength of each specimen showed obvious anisotropy due to unique grain growth morphology. On the whole, the results from this study prove that CMT+P process is a feasible MIG welding additive manufacturing method for 316L stainless steel.


Metals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 729 ◽  
Author(s):  
Wei Chen ◽  
Guangfu Yin ◽  
Zai Feng ◽  
Xiaoming Liao

Additive manufacturing by selective laser melting (SLM) was used to investigate the effect of powder feedstock on 316L stainless steel properties include microstructure, relative density, microhardness and mechanical properties. Gas atomized SS316L powders of three different particle size distribution were used in this study. Microstructural investigations were done by scanning electron microscopy (SEM). Tensile tests were performed at room temperatures. Microstructure characterization revealed the presence of hierarchical structures consisting of solidified melt pools, columnar grains and multiform shaped sub-grains. The results showed that the SLM sample from the fine powder obtained the highest mechanical properties with ultimate tensile strength (UTS) of 611.9 ± 9.4 MPa and yield strength (YS) of 519.1 ± 5.9 MPa, and an attendant elongation (EL) of 14.6 ± 1.9%, and a maximum of 97.92 ± 0.13% and a high microhardness 291 ± 6 HV0.1. It has been verified that the fine powder (~16 μm) could be used in additive manufacturing with proper printing parameters.


Sign in / Sign up

Export Citation Format

Share Document