Attenuation of cytotoxicity induced by tBHP in H9C2 cells by Bacopa monniera and Bacoside A

2018 ◽  
Vol 25 (2) ◽  
pp. 143-149 ◽  
Author(s):  
Mohan Manu T ◽  
T. Anand ◽  
Farhath Khanum
2020 ◽  
Vol 19 (2) ◽  
pp. 133-138
Author(s):  
Wenyu Chen ◽  
Hui He

Trilobatin is a natural plant-derived glycosylated flavonoid that has been shown to exhibit multiple beneficial pharmacologic activities including protection of heart against H/R-induced cardiomyocyte injury. However, the molecular mechanisms underlying protection from H/R-induced cardiomyocyte injury remain unknown. Using H9C2 cells as a model, we examined the effect of trilobatin on H/R-induced cellular injury, apoptosis, and generation of reactive oxygen species. The results showed that trilobatin protected H9C2 cells not only from cell death and apoptosis, but also counteracted H/R-induced changes in malondialdehyde, superoxide dismutase, glutathione, and glutathione peroxidase. The evaluation of the mechanism underlying the effect of trilobatin on protection from H/R-induced cellular injury suggested changes in the regulation of nuclear factor erythroid 2-related factor 2/heme oxygenase-1 pathway.


Author(s):  
Haiyun Sun ◽  
Chong Wang ◽  
Ying Zhou ◽  
Xingbo Cheng

Objective: Diabetic cardiomyopathy (DCM) is an important complication of diabetes. This study was attempted to discover the effects of long noncoding RNA OIP5-AS1 (OIP5-AS1) on the viability and oxidative stress of cardiomyocyte in DCM. Methods: The expression of OIP5-AS1 and microRNA-34a (miR-34a) in DCM was detected by qRT-PCR. In vitro, DCM was simulated by high glucose (HG, 30 mM) treatment in H9c2 cells. The viability of HG (30 mM)-treated H9c2 cells was examined by MTT assay. The reactive oxygen species (ROS), superoxide dismutase (SOD) and malondialdehyde (MDA) levels were used to evaluate the oxidative stress of HG (30 mM)-treated H9c2 cells. Dual-luciferase reporter assay was used to confirm the interactions among OIP5-AS1, miR-34a and SIRT1. Western blot was applied to analyze the protein expression of SIRT1. Results: The expression of OIP5-AS1 was down-regulated in DCM, but miR-34a was up-regulated. The functional experiment stated that OIP5-AS1 overexpression increased the viability and SOD level, while decreased the ROS and MDA levels in HG (30 mM)-treated H9c2 cells. The mechanical experiment confirmed that OIP5-AS1 and SIRT1 were both targeted by miR-34a with the complementary binding sites at 3′UTR. MiR-34a overexpression inhibited the protein expression of SIRT1. In the feedback experiments, miR-34a overexpression or SIRT1 inhibition weakened the promoting effect on viability, and mitigated the reduction effect on oxidative stress caused by OIP5-AS1 overexpression in HG (30 mM)-treated H9c2 cells. Conclusions: OIP5-AS1 overexpression enhanced viability and attenuated oxidative stress of cardiomyocyte via regulating miR-34a/SIRT1 axis in DCM, providing a new therapeutic target for DCM.


Author(s):  
Evangelos Zevolis ◽  
Anastassios Philippou ◽  
Athanasios Moustogiannis ◽  
Antonios Chatzigeorgiou ◽  
Michael Koutsilieris

Life Sciences ◽  
2021 ◽  
pp. 119107
Author(s):  
Liu Yang ◽  
Yang Yu ◽  
Ge Tian ◽  
Hanyu Deng ◽  
Bo Yu
Keyword(s):  

Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 53
Author(s):  
Jung Joo Yoon ◽  
Chan Ok Son ◽  
Hye Yoom Kim ◽  
Byung Hyuk Han ◽  
Yun Jung Lee ◽  
...  

Cardiac hypertrophy is a major risk factor for heart failure and leads to cardiovascular morbidity and mortality. Doxorubicin (DOX) is regarded as one of the most potent anthracycline antibiotic agents; however, its clinical usage has some limitations because it has serious cardiotoxic side effects such as dilated cardiomyopathy and congestive heart failure. Betulinic acid (BA) is a pentacyclic-cyclic lupane-type triterpene that has been reported to have anti-bacterial, anti-inflammatory, anti-vascular neogenesis, and anti-fibrotic effects. However, there is no study about its direct effect on DOX induced cardiac hypertrophy and apoptosis. The present study aims to investigate the effect of BA on DOX-induced cardiomyocyte hypertrophy and apoptosis in vitro in H9c2 cells. The H9c2 cells were stimulated with DOX (1 µM) in the presence or absence of BA (0.1–1 μM) and incubated for 24 h. The results of the present study indicated that DOX induces the increase cell surface area and the upregulation of hypertrophy markers including atrial natriuretic peptide (ANP), B-type natriuretic peptide (BNP), beta-myosin heavy chain (β-MHC), and Myosin Light Chain-2 (MLC2) in H9c2 cells. However, the pathological hypertrophic responses were downregulated after BA treatment. Moreover, phosphorylation of JNK, ERK, and p38 in DOX treated H9c2 cells was blocked by BA. As a result of measuring the change in ROS generation using DCF-DA, BA significantly inhibited DOX-induced the production of intracellular reactive oxygen species (ROS) when BA was treated at a concentration of over 0.1 µM. DOX-induced activation of GATA-4 and calcineurin/NFAT-3 signaling pathway were remarkably improved by pre-treating of BA to H9c2 cells. In addition, BA treatment significantly reduced DOX-induced cell apoptosis and protein expression levels of Bax and cleaved caspase-3/-9, while the expression of Bcl-2 was increased by BA. Therefore, BA can be a potential treatment for cardiomyocyte hypertrophy and apoptosis that lead to sudden heart failure.


Open Medicine ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 047-057
Author(s):  
Lei Gong ◽  
Xuyang Wang ◽  
Jinyu Pan ◽  
Mingjun Zhang ◽  
Dian Liu ◽  
...  

AbstractObjectiveThe purpose of the present study was to evaluate the role of co-treatment of rosuvastatin (RSV) and dapagliflozin (DGZ) preconditioning in myocardium ischemia/reperfusion (I/R) injury and to further investigate the underlying mechanism.MethodsSprague-Dawley (SD) rats (n = 25) were divided into five groups randomly: (1) Sham, (2) I/R, (3) I/R + RSV (10 mg/kg), (4) IR + DGZ (1 mg/kg), and (5) I/R + RSV (10 mg/kg) + DGZ (1 mg/kg). The I/R model was induced with 30 min of left anterior descending occlusion followed by 120 min of reperfusion.ResultsIn vivo pretreatment with RSV and DGZ, respectively, showed a significant reduction of infarction size, a significant increase in the levels of left ventricular systolic pressure, and maximal rate increase in left ventricular pressure (+dp/dtmax), decrease in the levels of left ventricular end-diastolic pressure (LVEDP), maximal rate of decrease of left ventricular pressure (−dp/dtmax) and activity of cardiac enzymes of creatine kinase (CK), creatine kinase MB isoenzymes (CK-MB), and hyper-tensive cardiac troponin I compared with the I/R group. H9C2 cells were exposed to hypoxia/reoxygenation to simulate an I/R model. In vitro administration of 25 µM RSV and 50 µM DGZ significantly enhanced cell viability, upregulated the expression levels of p-PI3K, p-Akt, p-mTOR, and Bcl-2, whereas it downregulated cleaved-caspase3, Bax. TUNEL assay indicated that pretreatment with RSV and DGZ decreased the apoptosis of H9C2 cells.ConclusionThe combination of RSV and DGZ significantly enhances the cardioprotective effects compared with RSV or DGZ alone. RSV and DGZ have the potential cardioprotective effects against I/R injury by activating the PI3K/AKt/mTOR signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document